Все о тюнинге авто

Определенный интеграл. Как вычислить площадь фигуры

Инструкция

Удобно действовать, если ваша фигура - многоугольник. Вы всегда сможете разбить его на конечное число , и вам достаточно помнить одну только формулу - площади треугольника. Итак, треугольника – это половина от произведения длины его стороны на длину высоты, проведенной к этой самой стороне. Суммировав площади отдельных треугольников, в которые вашей волей преобразована более сложная , вы узнаете искомый результат.

Сложнее решить задачку с определением площади произвольной фигуры. У такой фигуры могут быть не только , но и криволинейные границы. Есть способы для приблизительного вычисления. Простые.

Во-первых, вы можете использовать палетку. Это инструмент из прозрачного материала с нанесенной на его поверхность сеткой квадратов или треугольников с известной площадью. Наложив палетку поверх фигуры, для которой ищете площадь, вы пересчитываете число ваших единиц измерения, которые перекрывают изображение. Сочетайте неполностью закрытые единицы измерения друг с другом, дополняя их в уме до полных. Далее, умножив площадь одной фигуры палетки на число, которое подсчитали, вы узнаете приблизительную площадь вашей произвольной фигуры. Понятно, что чем более частая сетка нанесена на вашей палетке, тем точнее ваш результат.

Во-вторых, вы можете внутри границ произвольной фигуры, для которой определяете площадь, очертить максимальное число треугольников. Определить площадь каждого и сложить их площади. Это будет очень приблизительный результат. Если вы желаете, то можете также раздельно определить площадь сегментов, ограниченных дугами. Для этого представьте себе, что сегмент - часть от круга. Постройте этот круг, а после от его центра проведите радиусы к краям дуги. Отрезки образуют между собой угол α. Площадь всего сектора определяется по формуле π*R^2*α/360. Для каждой более мелкой части вашей фигуры вы определяете площадь и получаете общий результат, сложив полученные значения.

Третий способ сложнее, но точнее и для кого-то, проще. Площадь любой фигуры можно определить с помощью интегрального исчисления. Определенный интеграл функции показывает площадь от графика функции до абсциссы. Площадь заключенную между двумя графиками, можно определить вычитанием определенного интеграла, с меньшим значением, из интеграла в тех же границах, но с большим значением. Для использования этого метода удобно перенести вашу произвольную фигуру в систему координат и далее определить их функции и действовать методами высшей математики, в которую здесь и сейчас углубляться не станем.

Знания о том, как измерить Землю, появились еще в древности и постепенно оформились в науку геометрию. С греческого языка это слово так и переводится - «землемерие».

Мерой протяжённости плоского участка Земли по длине и ширине является площадь. В математике она обычно обозначается латинской буквой S (от англ. «square» - «площадь», «квадрат») или греческой буквой σ (сигма). S обозначает площадь фигуры на плоскости или площадь поверхности тела, а σ — площадь поперечного сечения провода в физике. Это основные символы, хотя могут быть и другие, например, в сфере сопротивления материалов, А - площадь сечения профиля.

Вконтакте

Формулы расчета

Зная площади простых фигур, можно находить параметры более сложных . Античными математиками были выведены формулы, по которым можно легко их вычислять. Такими фигурами являются треугольник, четырёхугольник, многоугольник, круг.

Чтобы найти площадь сложной плоской фигуры, её разбивают на множество простых фигур, таких как треугольники, трапеции или прямоугольники. Затем математическими методами выводят формулу для площади этой фигуры. Подобный метод используют не только в геометрии, но и в математическом анализе для вычисления площадей фигур, ограниченных кривыми .

Треугольник

Начнём с самой простой фигуры - треугольника. Они бывают прямоугольные, равнобедренные и равносторонние. Возьмём любой треугольник ABC со сторонами AB=a, BC=b и AC=c (∆ ABC). Чтобы найти его площадь, вспомним известные из школьного курса математики теоремы синусов и косинусов. Отпуская все выкладки, придём к следующим формулам:

  • S=√ - известная всем формула Герона, где p=(a+b+c)/2 - полупериметр треугольника;
  • S=a h/2, где h - высота, опущенная на сторону a;
  • S=a b (sin γ)/2, где γ - угол между сторонами a и b;
  • S=a b/2, если ∆ ABC - прямоугольный (здесь a и b - катеты);
  • S=b² (sin (2 β))/2, если ∆ ABC - равнобедренный (здесь b - одно из «бёдер», β - угол между «бёдрами» треугольника);
  • S=a² √¾, если ∆ ABC - равносторонний (здесь a - сторона треугольника).

Четырёхугольник

Пусть имеется четырёхугольник ABCD, у которого AB=a, BC=b, CD=c, AD=d. Чтобы найти площадь S произвольного 4-угольника, нужно разделить его диагональю на два треугольника, площади которых S1 и S2 в общем случае не равны.

Затем по формулам вычислить их и сложить, т. е. S=S1+S2. Однако, если 4-угольник принадлежит к определённому классу, то его площадь можно найти по заранее известным формулам:

  • S=(a+c) h/2=e h, если 4-угольник - трапеция (здесь a и c - основания, e - средняя линия трапеции, h - высота, опущенная на одно из оснований трапеции;
  • S=a h=a b sin φ=d1 d2 (sin φ)/2, если ABCD - параллелограмм (здесь φ - угол между сторонами a и b, h - высота, опущенная на сторону a, d1 и d2 - диагонали);
  • S=a b=d²/2, если ABCD - прямоугольник (d - диагональ);
  • S=a² sin φ=P² (sin φ)/16=d1 d2/2, если ABCD - ромб (a - сторона ромба, φ - один из его углов, P - периметр);
  • S=a²=P²/16=d²/2, если ABCD - квадрат.

Многоугольник

Чтобы найти площадь n-угольника, математики разбивают его на простейшие равные фигуры -треугольники, находят площадь каждого из них и затем складывают. Но если многоугольник относится к классу правильных, то используют формулу:

S=a n h/2=a² n/=P²/, где n - количество вершин (или сторон) многоугольника, a - сторона n-угольника, P - его периметр, h - апофема, т. е. отрезок, проведённый из центра многоугольника к одной из его сторон под углом 90°.

Круг

Круг - это совершенный многоугольник, имеющий бесконечное число сторон . Нам необходимо вычислить предел выражения справа в формуле площади многоугольника при числе сторон n, стремящемуся к бесконечности. В этом случае периметр многоугольника превратится в длину окружности радиуса R, которая будет границей нашего круга, и станет равен P=2 π R. Подставим это выражение в указанную выше формулу. Мы получим:

S=(π² R² cos (180°/n))/(n sin (180°/n)).

Найдём предел этого выражения при n→∞. Чтобы это сделать, учтём, что lim (cos (180°/n)) при n→∞ равен cos 0°=1 (lim - знак предела), а lim = lim при n→∞ равен 1/π (мы перевели градусную меру в радианную, используя соотношение π рад=180°, и применили первый замечательный предел lim (sin x)/x=1 при x→∞). Подставив в последнее выражение для S полученные значения, придём к известной формуле:

S=π² R² 1 (1/π)=π R².

Единицы измерения

Применяются системные и внесистемные единицы измерения . Системные единицы относятся к СИ (Система Интернациональная). Это квадратный метр (кв. метр, м²) и единицы, производные от него: мм², см², км².

В квадратных миллиметрах (мм²), например, измеряют площадь сечения проводов в электротехнике, в квадратных сантиметрах (см²) - сечения балки в строительной механике, в квадратных метрах (м²) - квартиры или дома, в квадратных километрах (км²) - территории в географии.

Однако иногда используются и внесистемные единицы измерения, такие, как: сотка, ар (а), гектар (га) и акр (ас). Приведём следующие соотношения:

  • 1 сотка=1 а=100 м²=0,01 га;
  • 1 га=100 а=100 соток=10000 м²=0,01 км²=2,471 ас;
  • 1 ас= 4046.856 м²=40,47 а=40,47 соток=0,405 га.

Площадь: Площадь величина, измеряющая размер поверхности. В математике Площадь фигуры геометрическое понятие, размер плоской фигуры. Площадь поверхности числовая характеристика поверхности. Площадь в архитектуре, открытое… … Википедия

Площадь - У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Площадь треугольника - Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

Площадь Ленина (Петрозаводск) - Площадь Ленина Петрозаводск … Википедия

Площадь (в геометрии) - Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

ПЛОЩАДЬ - одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких примыкающих друг к… … Большой Энциклопедический словарь

ПЛОЩАДЬ (в геометрии) - ПЛОЩАДЬ, одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких… … Энциклопедический словарь

ПЛОЩАДЬ - ПЛОЩАДЬ, площади, пред. о площади и (устар.) на площади, мн. и площадей, жен. (книжн.). 1. Часть плоскости, ограниченная ломаной или кривой линией (геом.). Площадь прямоугольника. Площадь криволинейной фигуры. 2. только ед. Пространство,… … Толковый словарь Ушакова

Площадь (архитект.) - Площадь, открытое, архитектурно организованное, обрамленное какими либо зданиями, сооружениями или зелёными насаждениями пространство, входящее в систему других городских пространств. Предшественниками городских П. были парадные дворы дворцовых и … Большая советская энциклопедия

Площадь Памяти (Тюмень) - Площадь Памяти Тюмень Общая информация … Википедия

Книги

  • Фигуры в математике, физике и природе. Квадраты, треугольники и круги , Шелдрик-Росс Кэтрин. О книге Фишки книги Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру В книге максимально подробно описаны главные фигуры: квадраты, круги и… Купить за 1206 руб
  • Фигуры в математике физике и природе Квадраты треугольники и круги , Шелдрик-Росс К.. Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру. В книге максимально подробно описаны главные фигуры: квадраты, кругии треугольники. Книга научит…

Класс: 5

На мой взгляд, задача учителя – не только научить, а развить познавательный интерес у учащегося. Поэтому, когда возможно, связываю темы урока с практическими задачами.

На занятии учащиеся под руководством учителя составляют план решения задач на нахождение площади «сложной фигуры» (для расчеты сметы ремонта), закрепляют навыки решения задач на нахождение площади; происходит развитие внимания, способности к исследовательской деятельности, воспитание активности, самостоятельности.

Работа в парах создает ситуацию общения между теми, кто имеет знания и теми, кто их приобретает; в основе такой работы лежит повышение качества подготовки по предмету. Способствует развитию интереса к процессу учения и более глубокому усвоению учебного материала.

Урок не только систематизирует знания обучающихся, но и способствует развитию творческих, аналитических способностей. Применение задач с практическим содержанием на уроке позволяет показать востребованность математических знаний в повседневной жизни.

Цели урока:

Образовательные:

  • закрепление знаний формул площади прямоугольника, прямоугольного треугольника;
  • анализ заданий на вычисление площади “сложной” фигуры и способов их выполнения;
  • самостоятельное выполнение заданий для проверки знаний, умений, навыков.

Развивающие:

  • развитие приёмов умственной и исследовательской деятельности;
  • развитие умения слушать и объяснять ход решения.

Воспитательные:

  • воспитывать у учащихся навыки учебного труда;
  • воспитывать культуру устной и письменной математической речи;
  • воспитывать дружеское отношение в классе и умение работать в группах.

Тип урока: комбинированный.

Оборудование:

  • Математика: учебник для 5 кл. общеобразоват. учреждений/ Н.Я. Виленкин, В.И. Жохов и др., М.: «Мнемозина», 2010.
  • Карточки для групп учащихся с фигурами для вычисления площади сложной фигуры.
  • Чертёжные инструменты.

План урока:

  1. Организационный момент.
  2. Актуализация знаний.
    а) Теоретические вопросы (тест).
    б) Постановка проблемы.
  3. Изученного нового материала.
    а) поиск решения проблемы;
    б) решение поставленной проблемы.
  4. Закрепление материала.
    а) коллективное решение задач;
    Физкультминутка.
    б) самостоятельная работа.
  5. Домашнее задание.
  6. Итог урока. Рефлексия.

Ход урока

I. Организационный момент.

Урок мы начнём вот с таких напутствующих слов:

Математика, друзья,
Абсолютно всем нужна.
На уроке работай старательно,
И успех тебя ждёт обязательно!

II. Актуализация знаний.

а) Фронтальная работа с сигнальными карточками (у каждого ученика карточки с числами 1, 2, 3, 4; при ответе на вопрос теста ученик поднимает карточку с номером правильного ответа).

1. Квадратный сантиметр – это:

  1. площадь квадрата со стороной 1 см;
  2. квадрат со стороной 1 см;
  3. квадрат с периметром 1 см.

2. Площадь фигуры, изображённой на рисунке, равна:

  1. 8 дм;
  2. 8 дм 2 ;
  3. 15 дм 2 .

3. Справедливо ли утверждение, что равные фигуры имеют равные периметры и равные площади?

4. Площадь прямоугольника определяется по формуле:

  1. S = a 2 ;
  2. S = 2 (a + b);
  3. S = a b.

5. Площадь фигуры изображённой на рисунке, равна:

  1. 12 см;
  2. 8 см;
  3. 16 см.

б) (Постановка проблемы). Задача. Сколько надо краски, чтобы покрасить пол, который имеет следующую форму (см. рис.), если на 1 м 2 расходуется 200 г краски?

III. Изучение нового материала.

Что же мы должны узнать, чтобы решить последнюю задачу? (Найти площадь пола, который имеет вид «сложной фигуры».)

Учащиеся формулируют тему и цели урока (если необходимо учитель помогает).

Рассмотрим прямоугольник ABCD . Проведём в нем линию KPMN , разбив прямоугольник ABCD на две части: ABNMPK и KPMNCD.

Чему равна площадь ABCD ? (15 см 2)

Чему равна площадь фигуры ABMNPK ? (7 см 2)

Чему равна площадь фигуры KPMNCD ? (8 см 2)

Проанализируйте полученные результаты. (15= = 7 + 8)

Вывод? (Площадь всей фигуры равна сумме площадей её частей.)

S = S 1 + S 2

Как можно применить это свойство для решения нашей задачи?(Разобьём сложную фигуру на части, найдём площади частей, затем площадь всей фигуры.)

S 1 = 7 2 = 14 (м 2)
S 2 = (7 – 4) (8 – 2 – 3) = 3 3 = 9 (м 2)
S 3 = 7 3 = 21 (м 2)
S = S 1 + S 2 + S 3 = 14 + 9 + 21 = 44 (м 2)

Давайте составим план решения задач на нахождение площади «сложной фигуры»:

  1. Разбиваем фигуру на простые фигуры.
  2. Находим площади простых фигур.

а) Задача 1. Сколько потребуется плитки, чтобы выложить площадку следующих размеров:

S = S 1 + S 2
S 1 = (60 – 30) 20 = 600 (дм 2)
S 2 = 30 50 = 1500 (дм 2)
S = 600 + 1500 = 2100 (дм 2)

Есть ли другой способ решения? (Рассматриваем предложенные варианты.)

Ответ: 2100 дм 2 .

Задача 2. (коллективное решение на доске и в тетрадях.) Сколько требуется м 2 линолеума для ремонта комнаты, имеющей следующую форму:

S = S 1 + S 2
S 1 = 3 2 = 6 (м 2)
S 2 = ((5 – 3) 2) : 2 = 2 (м 2)
S = 6 + 2 = 8 (м 2)

Ответ: 8 м 2 .

Физкультминутка.

А теперь, ребята, встали.
Быстро руки вверх подняли.
В стороны, вперед, назад.
Повернулись вправо, влево.
Тихо сели, вновь за дело.

б) Самостоятельная работа (обучающего характера).

Учащиеся разбиваются на группы (№ 5–8 более сильные). Каждая группа – ремонтная бригада.

Задание бригадам: определите, сколько надо краски, чтобы покрасить пол, имеющий форму фигуры, изображённой на карточке, если на 1 м 2 требуется 200 г краски.

Вы эту фигуру строите своей тетради и записывая все данные, приступаете к выполнению задания. Можете обсуждать решение (но только в своей группе!). Если какая-то группа справляется с заданием быстро, то ей – дополнительное задание (после проверки самостоятельной работы).

Задания для групп:

V. Домашнее задание.

п. 18, № 718, № 749.

Дополнительное задание. План-схема Летнего сада (Санкт-Петербург). Вычислить его площадь.

VI. Итоги урока.

Рефлексия. Продолжи фразу:

  • Сегодня я узнал…
  • Было интересно…
  • Было трудно…
  • Теперь я могу…
  • Урок дал мне для жизни…

Теорема 1.

Площадь квадрата равна квадрату его стороны.

Докажем что площадь S квадрата со стороной a равна a 2 . Возьмем квадрат со стороной 1 и разобьем его на n равных квадратов так, как показано на рисунке 1. геометрия площадь фигура теорема

Рисунок 1.

Так как сторона квадрата равна 1, то площадь каждого маленького квадрата равна. Сторона каждого маленького квадрата равна, т.е. равна а. Из этого следует, что. Теорема доказана.

Теорема 2.

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне (рис.2.):

S = a * h.

Пусть ABCD - данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности угол A острый (рис.2.).


Рисунок 2.

Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE * AD. Отрезок AE - высота параллелограмма, опущенная к стороне AD , и, следовательно, S = a * h. Теорема доказана.

Теорема 3

Площадь треугольника равна половине произведения его стороны на проведенную к ней высоту (рис.3.):


Рисунок 3.

Доказательство.

Пусть ABC - данный треугольник. Дополним его до параллелограмма ABCD, как показано на рисунке (рис.3.1.).


Рисунок 3.1.

Площадь параллелограмма равна сумме площадей треугольников ABC и CDA. Так как эти треугольники равны, то площадь параллелограмма равна удвоенной площади треугольника ABC. Высота параллелограмма, соответствующая стороне CB, равна высоте треугольника, проведенной к стороне CB. Отсюда следует утверждение теоремы, Теорема доказана.

Теорема 3.1.

Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (рис 3.2.).


Рисунок 3.2.

Доказательство.

Введем систему координат с началом в точке С так, чтобы B лежала на положительной полуоси C x , а точка А имела положительную ординату. Площадь данного треугольника можно вычислить по формуле, где h - высота треугольника. Но h равна ординате точки А, т.е. h=b sin C. Следовательно, . Теорема доказана.

Теорема 4.

Площадь трапеции равна произведению полусуммы его оснований на высоту (рис.4.).


Рисунок 4.

Доказательство.

Пусть ABCD - данная трапеция (рис.4.1.).

Рисунок 4.1.

Диагональ AC трапеции разбивает ее на два треугольника: ABC и CDA.

Следовательно, площадь трапеции равна сумме площадей этих треугольников.

Площадь треугольника ACD равна площадь треугольника ABC равна. Высоты AF и CE этих треугольников равна расстоянию h между параллельными прямыми BC и AD, т.е. высоте трапеции. Следовательно, . Теорема доказана.

Площади фигур имеют огромное значение в геометрии, как в науке. Ведь площадь это одна из важнейших величин в геометрии. Без знания площадей невозможно решить множество геометрических задач, доказать теоремы, обосновать аксиомы. Площади фигур имели огромное значение много веков назад, но не утратили своего значения в современном мире. Понятия площадей используются во многих профессиях. Они применяются в строительстве, проектирование и во многих других видах деятельности человека. Из этого можно сделать вывод,что без развития геометрии, в частности понятий о площадях, человечество не смогло бы такой большой прорыв в области наук и технике.