Все о тюнинге авто

Мутагенные факторы мутагенез и канцерогенез. Мутагенез.Понятие о мутагенах

Современные представления о причинах злокачественной тран­сформации клеток - превращении их в раковые - основано на двух группах фактов.

Первая из них - существование онкогенных вирусов, или ретровирусов, содержащих РНК в качестве генетического матери­ала, ДНК-копии которых могут встраиваться в геном инфицируе­мой клетки (см. гл. 10). Результатом этого процесса может быть злокачественное новообразование. Онкогенные вирусы содержат онкоген, экспрессия которого и ответственна за канцерогенез. Этот механизм восходит к вирусо-генетической теории рака, предложенной в 1945 г. советским ученым Л. А. Зильбером.

Вторая группа фактов сводится к тому, что разнообразные внешние воздействия на клетки, в большинстве случаев (но не всегда) мутагенные, также могут привести к их превращению в раковые. Наследственные заболевания человека, связанные с на­рушениями репарации (см. гл. 20), сопровождаются повышением мутабильности соматических клеток, судя по хромосомным абер­рациям, и тоже характеризуются повышенной частотой злокачест­венных новообразований. Предположения о мутационной природе канцерогенеза высказываются с начала XX в., начиная с работы Т. Бовери (1914).

Таким образом, первая группа фактов побуждает искать при­чину рака в действии генетического материала, вносимого в клетку извне, а вторая - искать генетические причины рака в самой клетке. Эти подходы объединяют сведения о том, что в нормальных клетках существуют так называемые протоонкогены - гены, гомологичные онкогенам ретровирусов. Протоонкогены чрез­вычайно консервативны и сходны в геномах человека, мыши, дрозофилы и даже дрожжей. Некоторые из них контролируют нормальное протекание клеточного цикла. Нельзя сказать, что ме­ханизм канцерогенеза выяснен, однако наиболее вероятной при­чиной представляется злокачественная трансформация клетки вследствие нарушения экспрессии некоторых ее генов (онкоге­нов, протоонкогенов) в результате мутационных или модификаци- о иных изменений, а также в результате вирусной инфекции.

В свете этих представлений распространение в окружающей среде генетически активных агентов может приводить не только к повышению частоты мутаций, но и к повышению частоты злока­чественных новообразований. В связи с этим программы тести­рования химических соединений различных физических и биоло­гических факторов предусматривают выявление среди них потен­циальных канцерогенов. Учитывая важность этой задачи, в между­народном масштабе разрабатываются чувствительные тест-системы выявления канцерогенов, координируемые Всемирной организа­цией здравоохранения и другими международными организациями. В частности, для выявления канцерогенов используются кратковре­менные тесты, перечисленные в табл. 21.3, дополненные прямым испытанием химических соединений на их способность вызывать злокачественную трансформацию в культурах клеток животных и человека, а также у животных (мыши, крысы, хомяки). При высоком уровне корреляции (до 90 %) мутагенных и канцероген­ных свойств химических препаратов определенные трудности

возникают в связи с тем, что некоторые канцерогены генетически неактивны, а некоторые активные мутагены не являются канцеро­генами. Дальнейшее совершенствование систем тестирования мута­генов и канцерогенов должно способствовать не только обеспече­нию генетической безопасности человека, но и пониманию меха­низмов канцерогенеза.

Все мероприятия по выявлению генетически активных факторов направлены на сведение к минимуму контактов человека с мутаге­нами. Новые химические соединения и другие генетически активные агенты изымаются из употребления или их применение строго ограничивается. В тех же случаях, когда человек вынужден с ними соприкасаться, необходимо иметь в резерве средства ми­нимизации риска мутационных и канцерогенных изменений. Для этого необходимо знать пути мутагенеза и уметь вмешиваться в этот процесс. Становление мутации - процесс многоэтапный. В упрощенном виде его можно представить так, как это показа­но на схеме рис. 21.5. Многие мутагены, попадая в организм, включаются в цепи метаболических превращений и затем могут как активироваться, т. е. приобрести или повысить свою генети­ческую активность, так и инактивироваться, т. е. потерять ее. При этом необходимо учитывать организменные и клеточные барьеры проницаемости и способ попадания соединения в организм: через кожу; дыхательные пути и т. д.

Оказавшись внутри клетки, мутаген взаимодействует с генети­ческим материалом - с хроматином или непосредственно с ДНК ядра или клеточных органелл. В результате такого взаимодей­ствия в ДНК возникают первичные изменения, которые по мнению одних авторов можно считать пред мутационными, а по мнению других эти изменения должны превратиться в предмутационные на следующем этапе.

Большинство предмутационных изменений устраняется систе­мами репарации (см. гл. 6.12): конститутивная безошибочная репарация восстанавливает исходную структуру молекулы ДНК, а индуцибельная репарация, склонная к ошибкам, может фиксиро­вать мутационные изменения. Фиксация мутации сопровождается ее фенотипическим проявлением, если мутация доминантна или если она находится в гомозиготе, будучи рецессивной, в отсутствие эпистатирующих генов или супрессоров в условиях, не вызываю­щих фенокопии нормы. Каждый из рассмотренных этапов может быть разбит на более дробные стадии.

В ряде случаев есть возможность вмешаться в процесс ста­новления и проявления мутации. Если начать с последнего эта­па - проявления мутации, то фе но копирование нормы - задача медицины и медицинской генетики, которые способны предотвра­щать развитие болезни во многих случаях наследственных пато­логий (гл. 20).

Рис. 21.5. Последовательные этапы возникновения и проявления мутаций. Поясне­ния в тексте

Развиваются исследования по антимутагенезу. Это понятие включает такие воздействия на клетку и организм, которые блокируют или уменьшают вероятность возникновения мутаций. Подобные воздействия могут стимулировать системы инактивации мутагенов или подавлять системы активации промутагенов, могут стимулировать процессы безошибочной репарации или непосредст­венно модифицировать мутаген, «отвлекать» его от генетического материала (рис. 21.5).

Антимутагепной активностью обладают радиопротекторы - соединения, способные уменьшать летальный эффект ионизирую­щей радиации, прежде всего серосодержащие аминокислоты: цистеин, I(истин, метионин и др.

Обычно для каждого конкретною мутагена антимутагенная активность специфична, что затрудняет поиски антимутагенов. Генетическую активность!\!"-мети ч- N"-ниrpo- N"-нитрозогуанидина

(МННГ) нейтрализует кровь млекопитающих, в которой основным антимутагеном (анти-МННГ) служит гемин. Ненасыщенные жир­ные кислоты, тониновая кислота и катехин, содержащийся в чае и кофе, некоторые витамины, например а-токоферол, и другие соединения обладают большей или меньшей антимутагенной ак­тивностью по отношению к отдельным мутагенам.

К сожалению, разнообразие исследованных соединений и объ­ектов так велико, что не представляется возможным делать какие- либо обобщения о природе антимутагенных эффектов. Кроме того, исследователи обычно не могут контролировать различные этапы становления мутации (рис. 21.5). Отсутствуют тест-системы, специализированные для поиска антимутагенов.

Обращаясь к проблеме уменьшения генетической опасности, следует помнить, что человеческие популяции гетерогенны по многим признакам (см. гл. 20), в том числе по реакции на раз­личные воздействия внешних факторов. Это обстоятельство уже учитывает фармако генетика, изучающая реакцию различных групп людей на лекарственные вещества. Известно, например, что у некоторых больных сульфаниламидные препараты вызывают гемолиз. Это связано с наследственной недостаточностью глю- козо-6-фосфатдегидрогеназы. Есть категория людей с наслед­ственной болезненной реакцией на глюкокортикоиды. При при­менении этих препаратов у них повышается внутриглазное дав­ление. Нестабильность некоторых мутантных форм гемоглобина сопряжена с гемолизом при применении окислителей.

Известна также наследственная чувстительность к действию некоторых мутагенов и канцерогенов. Например, люди с повы­шенной активностью арилгидрокарбонгидроксилазы склонны к заболеваниям раком легких в случае контакта с полициклическими углеводородами, которые после гидроксилирования указанным ферментом превращаются в эпоксиды, обладающие высокой канцерогенной активностью.

Эти обстоятельства необходимо учитывать в разных облас­тях человеческой деятельности: при лечении больных, при про­фессиональном отборе людей, имеющих дело с различными производственными вредностями.

Итак, меры по обеспечению генетической безопасности чело­века связаны с решением многих проблем, обших для генетики и экологии, и прежде всего охраны окружающей среды от загряз­нения. Генетическая токсикология делает при этом главный акцент на генетически активные факторы. Эта работа, начавшаяся в 60-х годах в связи с ростом темпов научно-технической рево­люции, стала неотъемлемой частью и условием дальнейшего прогресса технологии во всех областях промышленности и сель­ского хозяйства. Генетическая безопасность человечества должна основываться и на знании популяционной генетики человека, учитывающей полиморфизм человеческих популяций, предраспо­ложенность людей к отрицательным реакциям на различные фак­торы окружающей природной и производственной среды. При

выявлении мутагенной и канцерогенной активности многих ве­ществ, используемых ныне в сельском хозяйстве, необходима большая осторожность в их применении. Перспектива отказа от использования этих генетически активных веществ связана с разработкой биологических методов борьбы с сорняками, насеко­мыми-вредителями и т. д. Учет этой перспективы, а также не­обходимость дальнейшей селекции полезных человеку организмов невозможны без бережного отношения к биологическим при­родным ресурсам. Особого внимания в этом деле заслуживает сохранение генофонда планеты, который представляет собой по­стоянный источник полезных форм, а теперь является источником конкретных генов, которые могут быть использованы для создания новых сортов растений, пород животных и штаммов микроорганиз­мов.

Лекция 3. УД «Генетика человека с основами медицинской генетики» по теме «Мутации и мутагенные факторы»

Цель лекции:

Изучение закономерностей мутагенеза

Изучение причин мутаций

Изучение значения понятия «генетический груз»

Изучение классификации мутагенов

Ознакомление с терминологией генетики

План лекции:

Мутагенез.Понятие о мутагенах. Классификация мутагенов.Виды мутаций. Классификация мутаций.

Изменчивость - свойство организмов приобретать новые признаки и особенности индивидуального развития под влиянием среды. Различают модификационную и генотипическую изменчивость.

Модификационная изменчивость - это способность организма реагировать на условия окружающей среды, изменяться в пределах нормы реакции организма.

Наследственная изменчивость - это способность к изменению самого генетического материала.

При всех формах изменчивости имеется генетический контроль и о происшедших изменениях можно судить лишь по фенотипу (по изменению признаков и свойств организма).

Модификации развиваются в естественных условиях среды и подвергаются действию факторов, много раз встречавшихся в процессе филогенеза, то есть норма реакции складывалась исторически.

Модификации, напоминающие проявления мутаций известных генов, называются фенокопии. Они сходны с мутациями, но механизм их возникновения различен (катаракта может быть следствием как мутации, так и фенокопией).

Модификации имеют приспособительное значение и способствуют адаптации организма к условиям окружающей среды, сохраняют гомеостаз организма.

Изучение модификационной изменчивости проводится с помощью близнецового метода (соотносительная роль наследственности и среды в развитии признака) и метода вариационной статистики (изучение количественных признаков).

Генотипическая изменчивость связана с качественными и количественными изменениями наследственного материала. Она включает комбинативную и мутационную изменчивость.

1. Комбинативная изменчивость. Уникальность каждого генотипа обусловлена комбинативной изменчивостью, которая определяется новыми сочетаниями аллелей генов в генотипе. Достигается это в результате 3-х процессов: два из них связаны с мейозом, третий - с оплодотворением.

2. Мутационная изменчивость. При мутационной изменчивости нарушается структура генотипа, что вызвано мутациями. Мутации - это качественные, внезапные, устойчивые изменения в генотипе.

Существуют различные классификации мутаций.

По уровню изменения наследственного материала (генные, хромосомные, геномные);

По проявлению в фенотипе (морфологические, биохимические, физиологические);


По происхождению (спонтанные, индуцированные);

По их влиянию на жизнь организма (летальные, полулетальные, условно летальные);

По типам клеток (соматические и генеративные);

По локализации в клетке (ядерные, цитоплазматические).

Генные мутации связаны с молекулой ДНК - нарушение нормальной последовательности нуклеотидов, свойственной данному гену. Это может быть вызвано изменением количества нуклеотидов (выпадением или вставкой) или их заменой.

Мутации появляются в генотипе с определённой частотой и часто проявляются фенотипически. Некоторые из них являются причиной возникновения генных (молекулярных) болезней. В организме имеются механизмы, ограничивающие неблагоприятный эффект мутаций: репарация ДНК, диплоидный набор хромосом, вырожденность генетического кода, повтор (амплификация) некоторых генов.

Хромосомные мутации (аберрации) заключаются в изменении структуры хромосом (внутрихромосомные и межхромосомные).

Внутрихромосомные мутации: делеции, дупликации, инверсии. При делециях и дупликациях изменяется количество генетического материала, а при инверсиях - его расположение. При межхромосомных мутациях происходит транслокация наследственного материала, обмен участками между негомологичными хромосомами.

Геномные мутации заключаются в изменении числа отдельных хромосом (гетероплоидия) или нарушении геномного числа хромосом (полиплоидия).

Хромосомные и геномные мутации являются причинами хромосомных болезней. Разработана система обозначений мутаций (Денверская и Парижская классификация).

Мутации имеют значение в онто- и филогенезе, они приводят к появлению новых свойств наследственного материала: генные - появлению новых аллелей, хромосомные аберрации - к образованию новых групп сцепления генов, геномные мутации - новых генотипов. Они обеспечивают фенотипическое разнообразие организмов.

Мутагенез (мутационный процесс)

Мутационный процесс - процесс возникновения, формирования и реализации наследственных нарушений. Основой мутационного процесса являются мутации. Мутации происходят как в естественной среде обитания организмов, так и в условиях направленного воздействия мутагенами. В зависимости от этого различают спонтанный и индуцированный мутагенез.

Спонтанный мутагенез - это самопроизвольный процесс возникновения мутаций под влиянием естественных факторов среды. Существует несколько гипотез относительно генеза спонтанных мутаций: естественная радиация, наличие генов-мутаторов, определенное соотношение мутагенов и антимутагенов и др.По современным данным мутации возникают при нарушении процесса репликации и репарации ДНК.

Спонтанный мутационный процесс характеризуется определенной интенсивностью (частотой генных, хромосомных и геномных мутаций), непрерывностью, ненаправленностью, отсутствием специфичности; он является одной из биологических характеристик вида (стабильность генотипа) и протекает постоянно. Частота спонтанных мутаций подвергается генному контролю (ферменты репарации) и параллельно влиянию естественного отбора (появление новых мутаций уравновешивается их элиминацией). Познание закономерностей спонтанного мутагенеза, причин его возникновения необходимо для создания специальных методов слежения за мутациями, чтобы контролировать их количество у человека.

Индуцированный мутагенез - возникновение мутаций под влиянием направленных специальных факторов внешней среды - мутагенов.

Способностью индуцировать мутации обладают различные мутагены физической, химической и биологической природы, которые вызывают соответственно радиационный, химический и биологический мутагенез.

Физические мутагены: ионизирующее излучение, ультрафиолет, температура и др. Ионизирующая радиация оказывает непосредственное действие на гены (разрыв водородных связей ДНК, изменение нуклеотидов), хромосомы (хромосомные аберрации) и геномы (изменение числа и наборов хромосом). Эффект радиации сводится к ионизации и образованию свободных радикалов. Разные формы живых организмов характеризуются различной чувствительностью к радиации.

Химические мутагены (лекарственные препараты, никотин, алкоголь, гербициды, пестициды, кислоты, соли и др.) вызывают генные, реже хромосомные мутации. Мутагенный эффект больше у тех соединений, которые способны взаимодействовать с ДНК в период репликации.

Биологические мутагены (вирусы, живые вакцины и др.) вызывают генные мутации и хромосомные перестройки. Мутагенный эффект избирателен в отношении отдельных генов.

При оценке индуцированных мутаций учитывают индивидуальный и популяционный прогноз. Все виды мутагенеза опасны при вовлечении больших популяций людей.

Для защиты живых организмов от поражающего действия мутагенов используются антимутагены, организуется комплексная система генетического мониторинга и химического скрининга.

Репарация генетического материала

ДНК отличается высокой стабильностью, которая поддерживается особой ферментативной системой, находящейся под генетическим контролем, она же принимает участие и в репарации. Многие повреждения ДНК, которые могли бы реализоваться в виде мутаций при действии сильных мутагенов, исправляются репаративными системами.

Генетические различия в активности репарирующих ферментов определяют разную продолжительность жизни и устойчивость организмов к действию мутагенов и канцерогенов. У человека некоторые болезни (прогерия) связаны с нарушением процесса репликации и репарации ДНК. Моделью для изучения генетических механизмов репарации является заболевание –пигментная ксеродерма. Известно, что 90% мутагенов являются и канцерогенами. Существует несколько теоретических концепций (теорий) канцерогенеза: мутационная, вирусно-генетическая, концепция онкогена и др.

Генетический мониторинг

Человек контактирует с разнообразными химическими веществами, проверить каждое на возможность мутагенного (канцерогенного) эффекта или генотоксичности не представляется возможным, поэтому проводится отбор определенных химических веществ для исследования на мутагенность.

Выбор того или иного вещества определяется:

Его распространением в среде обитания человека и контактом с ними большей части населения (лекарства, косметические средства,

продукты питания, пестиды и др.)

Структурным сходством с известными мутагенами и канцерогенами (нитрозосоединения, ароматические углеводороды) Для исследования на мутагенность

Используется несколько тест-систем (около 20 из 100 имеющихся методов) т.к. нет универсального теста для выявления всех типов мутаций в половых и соматических клетках.

Применяется ступенчатость тестирования (в начале на микроорганизмах, дрозофиле и др. объектах и только потом в клетках человека.)

Иногда достаточно использование одной тест-системы, для выявления мутагенности вещества и соответственно невозможность его использования.

Генетический мониторинг - это система долговременных популяционных исследований по контролю за мутационным процессом у человека (слежение за мутациями). Он складывается из:

Химического скрининга - экспериментальной проверки мутагенности химических соединений (слежение за мутациями в тест-системах)

Прямого анализа частот генных мутаций

Феногенетического мониторинга.

Система тестирования состоит из просеивающей и полной программы, возможность их использования определяется степенью контакта населения с данным химическим веществом.

Прочитайте:
  1. E. Неявка на судебное заседание без уважительной причины.
  2. Адаптивный ответ, его неспецифичность. Примеры. Механизмы.
  3. Анатомия застенных желез тонкого отдела кишечника. Топография, назначение, видовые особенности у домашних животных и птиц. Иннервация, кровоснабжение, отток лимфы.
  4. Аномалии сократительной деятельности матки. Причины. Классификация. Методы диагностики.
  5. Аппендикулярный инфильтрат. Причины, клиника неосложненного и осложненного инфильтрата. Лечебно-диагностическая тактика. Методы лечения.
  6. Биотоки. Опыты Гальвани и Дюбуа-Реймона. Потенциал покоя и его природа. Мембранно-ионная теория Ю.Бернштейна. Условия и причины поляризации мембраны.
  7. Биоэлектрические процессы. Потенциал действия. Его основные части. Механизм возникновения (на примере ПД скелетной мускулатуры).
  8. В зависимости от этиологии развивается клиническая картина перитонита или внутреннего кровотечения.

Любые мутации могут возникнуть спонтанно или быть индуцированными. Спонтанные мутации появляются под влиянием неизвестных природных факторов и приводят к ошибкам при репликации ДНК. Индуцированные мутации возникают под воздействием специальных направленных факторов, повышающих мутационный процесс. Мутагенным действием обладают факторы физической, химической и биологической природы.

Мутагенные факторы среды - факторы , вызывающие появление мутаций .

Мутагенным действием обладают факторы физической, химической и биологической природы.

Среди физических мутагенов наиболее сильное мутантное действие оказывает ионизирующая радиация – рентгеновские лучи, α-, β-, γ-лучи. Обладая большой проникающей способностью, при действии на организм они вызывают образование свободных радикалов ОН или НО 2 из воды, находящейся в тканях. Эти радикалы обладают высокой реакционной способностью. Они могут расщеплять нуклеиновые кислоты и другие органические вещества.

Облучение вызывает как генные, так и хромосомные мутации. Ультрафиолетовое излучение характеризуется меньшей энергией, не вызывающей ионизацию тканей. Его действие приводит к образованию тимидиновых димеров. Присутствие их в ДНК обусловливает ошибки при ее репликации.

Химические мутагены должны обладать следующими качествами:

Высокой проникающей способностью;

Свойством изменять коллоидное состояние хромосом;

Определенным действием на состояние хромосомы или гена.

К химическим мутагенам можно отнести многие неорганические и органические соединения, например кислоты, щелочи, перекиси, соли металлов, формальдегид, пестициды, дефолианты, гербициды, колхицин и др.

Некоторые вещества способны усиливать мутационный эффект в сотни раз по сравнению со спонтанным. Их называют супермутагенами . К ним относят нитрозосоединения – иприт, диэтилнитрозамин, уретан и др.

Некоторые лекарственные препараты также обладают мутагенным эффектом, например, цитостатики, производные этиленимина, нитрозомочевина. Они повреждают ДНК в процессе репликации.

Известны также биологические факторы мутагенеза . Вирусы оспы, кори, ветряной оспы, эпидемического паротита, гепатита, краснухи и др. способны вызывать разрывы хромосом. Вирусы могут усиливать темпы мутации клеток хозяина за счет подавления активности репарационных систем. Есть данные о возрастании числа хромосомных перестроек в клетках человека после пандемий, вызванных вирулентными вирусами.

Канцерогене́з - сложный патофизиологический процесс зарождения и развития опухоли.

Мутации могут быть вызваны целым рядом мутагенов, относящихся к физическим, химическим и биологическим факторам.

Физические мутагены : все виды ионизирующих излучений, колебания температуры, влажности и др. Имеют общие механизмы действия:

Нарушают структуру генов и хромосом;

Образуют свободные радикалы, которые вступают в химическое взаимодействие с ДНК, повреждая ее;

Разрывают нити веретена деления;

Образуют димеры (Т-Т, Т-Ц) соседних пиримидиновых оснований одной цепи ДНК.

Среди физических факторов наибольшее значение имеют ионизирующие излучения. Ионизирующие излучения делят на:

· электромагнитные (волновые), к ним относят рентген-лучи с длиной волны от 0, 005 до 2 нм, гамма-лучи и космические лучи;

· корпускулярные излучения – бета-частицы (электроны и позитроны), протоны, нейтроны (быстрые и тепловые), альфа-частицы (ядра атомов гелия) и др. Проходя через живое вещество, ионизирующие излучения выбивают электроны из внешней оболочки атомов и молекул, что ведет к их химическим превращениям.

Различные животные характеризуются различной чувствительностью к ионизирующим излучениям, которая колеблется от 700 рентген для человека до сотен тысяч и миллионов рентген для бактерий и вирусов. Ионизирующие излучения вызывают в первую очередь изменения в генетическом аппарате клетки. Показано, что ядро клетки в 100 тыс. раз чувствительнее к радиации, чем цитоплазма. Значительно чувствительнее к радиации незрелые половые клетки (сперматогонии), чем зрелые (сперматозоиды). ДНК хромосом наиболее чувствительна к действию радиации. Развивающиеся изменения выражаются в генных мутациях и перестройках хромосом.

Показано, что частота мутаций зависит от общей дозы радиации и прямо пропорциональна дозе облучения.

Ионизирующие излучения действуют на генетический аппарат не только прямо, но и косвенно. Они вызывают радиолиз воды. Возникающие при этом радикалы (Н + , ОН -) оказывают повреждающее действие.

К сильным физическим мутагенам относятся ультрафиолетовые лучи (длина волны до 400 нм), которые не ионизируют атомы, а только возбуждают их электронные оболочки. В итоге в клетках развиваются химические реакции, которые могут приводить к мутации. Частота возникновения мутаций увеличивается с увеличением длины волны до 240-280 нм (соответствует спектру поглощения ДНК). УФ лучи вызывают генные и хромосомные перестройки, но в значительно меньшем количестве, чем ионизирующее излучение.

Гораздо более слабым физическим мутагеном является повышенная температура. Повышение температуры на 10° увеличивает частоту мутации в 3-5 раз. При этом возникают в основном генные мутации у низших организмов. На теплокровных животных с постоянной температурой тела и человека этот фактор не влияет.



Химические мутагены делят на несколько групп:

Природные органические и неорганические вещества (нитриты, нитраты, алкалоиды, гормоны, ферменты и др.);

Продукты промышленной переработки угля и нефти;

Синтетические вещества, ранее не встречавшиеся в природе (пестициды, инсектициды, пищевые консерванты);

Лекарственные препараты, которые могут вызывать у человека врожденные пороки развития (иммунодепрессанты, некоторые антибиотики, наркотические вещества, синтетические кортикостероиды и др.),

Все виды химических мутагенов обладают большой проникающей способностью, вызывают преимущественно генные мутации и действуют в период репликации ДНК. Их общий механизм действия - замена азотистых оснований их аналогами.

Самыми сильными химическими мутагенами являются: алкилирующие соединения: диметилсульфат; иприт и его производные – этиленимин, нитрозоалкил-нитрометил, нитрозоэтилмочевина и др. Иногда эти вещества являются супермутагенами и канцерогенами. Вторую группу химических мутагенов составляют аналоги азотистых оснований (5-бромурацил, 5-бромдезоксиуродин, 8-азогуанин, 2‑аминопурин, кофеин и др.). Третью группу составляют акридиновые красители (акридин желтый, оранжевый, профлавин). Четвертую группу составляют разные по строению вещества: азотистая кислота, гидроксиламин, разные перекиси, уретан, формальдегид.

Химические мутагены могут индуцировать как генные, так и хромосомные мутации. Они вызывают больше генных мутаций, чем ионизирующие излучения и УФ-лучи.



Биологические мутагены:

Невирусные инфекционные агенты (микоплазмы, бактерии, риккетсии);

Вирусы (краснухи, кори, гриппа);

К биологическим мутагенам относят некоторые виды вирусов. Показано, что большинство вирусов человека, животных и растений индуцируют мутации у дрозофилы. Допускается, что молекулы ДНК-вирусов представляют мутагенный элемент. Способность вирусов вызывать мутации обнаружены у бактерий и актиномицетов.

Мутации вызывают врожденные уродства и наследственные болезни человека. Поэтому насущной задачей является ограждение людей от действия мутагенов. Огромное значение в этом отношении имело запрещение испытаний ядерного оружия в атмосфере. Очень важно соблюдать меры защиты людей от радиации в атомной индустрии, при работе с изотопами, рентген-лучами. Определенную роль могут сыграть антимутагены вещества, снижающие эффект действия мутагенов (цистеамин, хинакрин, некоторые сульфаниламиды, производные пропионовой и галловой кислот). К антимутагенам относятся некоторые витамины–антиоксиданты (например, витамин Е, ненасыщенные жирные кислоты), серосодержащие аминокислоты, а также различные биологически активные вещества, которые повышают активность репарационных систем.

Во второй половине ХХ века над биосферой нависла угроза загрязнения мутагенами. Любая популяция способна выдержать лишь определенный груз мутаций. Увеличение частоты мутаций может привести к снижению устойчивости популяций из-за нарушения генетического гомеостаза. Необходимо дальнейшее усиление эколого-генетического мониторинга – контроля за состоянием окружающей среды на популяционно-генетическом уровне. В качестве профилактических мер следует использовать развитие «безотходных» технологий, ограничение производства веществ с мутагенным действием, усиление всех видов контроля за состоянием потенциально опасных предприятий: АЭС, химические и микробиологические производства, научно-промышленные установки биотехнологического характера.

Установлено, что мутагены при определенных условиях оказывают канцерогенное и тератогенное действие.

Канцерогены это факторы, провоцирующие развитие онкологических заболеваний ; тератогены это факторы, провоцирующие развитие различных аномалий, уродств. Тератогенный эффект дают многие лекарственные препараты. Например, в 1960-е гг. на Западе широко использовалось снотворное талидомид, применение которого привело к рождению большого числа детей с недоразвитыми конечностями. Наряду с тератами – уродствами – часто встречаются морфозы – изменения, которые не ведут к утрате органом его функций.

Отличить мутагенное действие от тератогенного сравнительно легко: тераты (уродства) являются ненаследственными модификациями, они предсказуемы (направлены) и не сохраняются в последующих поколениях. Например, серая окраска тела у дрозофилы – это нормальный признак. В то же время известна мутация yellow – желтое тело (эту мутацию легко получить искусственно, обрабатывая родительских особей различными мутагенами; при этом разные мутагены могут давать одинаковый фенотипический эффект). Если же личинкам дрозофилы добавлять в корм азотнокислое серебро, то все эти личинки разовьются в мух с желтым телом. Но, если от этих желтых мух получить потомство и выращивать его на обычной питательной среде, то все потомки вновь станут серыми. Таким образом, в данном случае «пожелтение» тела мух – это не мутация, а модификация, или фенокопия (модификация, по фенотипу копирующая мутацию); азотнокислое серебро в данном случае является не мутагеном, а тератогеном.

Спонтанные мутации.

Мутации, помимо качественных свойств, характеризует и способ

возникновения. Спонтанные (случайные) – мутации, возникающие при нормальных

условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов

(биологические, химические, физические). Спонтанные мутации возникают у

человека в соматических и генеративных тканях. Метод определения спонтанных

мутаций основан на том, что у детей появляется доминантный признак, хотя у

его родителей он отсутствует. Проведенное в Дании исследование показали,

что примерно одна из 24000 гамет несет в себе доминантную мутацию. Ученый

же Холдейн рассчитал среднюю вероятность появления спонтанных мутаций,

которая оказалась равна 5*10-5 за поколение. Другой ученый Курт Браун

предложил прямой метод оценки таких мутаций, а именно: число мутаций

разделить на удвоенное количество обследованных индивидов.

Индуцированные мутации.

Индуцированный мутагенез – это искусственное получение мутаций с

помощью мутагенов различной природы. Впервые способность ионизирующих

излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым.

Затем, проводя обширные исследования, была установлена радиобиологическая

зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было

доказано, что частота мутаций увеличивается с увеличением дозы воздействия.

В конце сороковых годов открыли существование мощных химических мутагенов,

которые вызывали серьезные повреждения ДНК человека для целого ряда

вирусов. Одним из примеров воздействия мутагенов на человека может служить

эндомитоз – удвоение хромосом с последующим делением центромер, но без

расхождения хромосом.

Мутагены - химические и физические факторы, вызывающие наследственные изменения - мутации. Впервые искусственные мутации получены в 1925 году Г. А. Надсеном и Г. С. Филипповым у дрожжей действием радиоактивного излучения радия; в 1927 году Г. Мёллер получил мутации у дрозофилы действием рентгеновских лучей. Способность химических веществ вызывать мутации (действием иода на дрозофилы) открыта И. А. Рапопортом. У особей мух, развившихся из этих личинок, частота мутаций оказалась в несколько раз выше, чем у контрольных насекомых.

Мутагенами могут быть различные факторы, вызывающие изменения в структуре генов, структуре и количестве хромосом. По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные - все прочие факторы, в том числе и условия окружающей среды.

По природе возникновения мутагены классифицируют на физические, химические и биологические:

Физические мутагены.

Ионизирующее излучение;

Радиоактивный распад;

Ультрафиолетовое излучение;

Моделированное радиоизлучение и электромагнитные поля;

Чрезмерно высокая или низкая температура.

Химические мутагены.

Окислители и восстановители (нитраты, нитриты, активные формы кислорода);

Алкилирующие агенты (например, иодацетамид);

Пестициды (например гербициды, фунгициды);

Некоторые пищевые добавки (например, ароматические углеводороды, цикламаты);

Продукты переработки нефти;

Органические растворители;

Лекарственные препараты (например, цитостатики, препараты ртути, иммунодепрессанты).

К химическим мутагенам условно можно отнести и ряд вирусов (мутагенным фактором вирусов являются их нуклеиновые кислоты - ДНК или РНК).

Биологические мутагены.

Специфические последовательности ДНК - транспозоны;

Некоторые вирусы (вирус кори, краснухи, гриппа);

Продукты обмена веществ (продукты окисления липидов);

Антигены некоторых микроорганизмов.

Канцерогенез- сложный патофизиологический процесс зарождения и развития опухоли. Изучение процесса канцерогенеза является ключевым моментом как для понимания природы опухолей, так и для поиска новых и эффективных методов лечения онкологических заболеваний. Канцерогенез - сложный многоэтапный процесс, ведущий к глубокой опухолевой реорганизации нормальных клеток организма. Из всех предложенных до ныне теорий канцерогенеза, мутационная теория заслуживает наибольшего внимания. Согласно этой теории, опухоли являются генетическими заболеваниями, патогенетическим субстратом которых является повреждение генетического материала клетки (точечные мутации, хромосомные аберрации и т. п.). Повреждение специфических участков ДНК приводит к нарушению механизмов контроля за пролиферацией и дифференцировкой клеток и в конце концов к возникновению опухоли. Генетический аппарат клеток обладает сложной системой контроля деления, роста и дифференцировки клеток. Изучены две регулирующие системы оказывающие кардинальное влияние на процесс клеточной пролиферации. Протоонкогены- это группа нормальных генов клетки, оказывающих стимулирующее влияние на процессы клеточного деления, посредством специфических продуктов их экспрессии. Превращение протоонкогена в онкоген (ген, определяющий опухолевые свойства клеток) является одним из механизмов возникновения опухолевых клеток. Это может произойти в результате мутации протоонкогена с изменением структуры специфического продукта экспрессии гена, либо же повышением уровня экспрессии протоонкогена при мутации его регулирующей последовательности (точечная мутация) или при переносе гена в активно транскрибируемую область хромосомы (хромосомные аберрации). На данный момент изучена канцерогенная активность протоонкогенов группы ras (HRAS, KRAS2). При различных онкологических заболеваниях регистрируется значительное повышение активности этих генов (рак поджелудочной железы, рак мочевого пузыря и т. д.). Также раскрыт патогенез лимфомы Беркитта, при которой активация протоонкогена MYC происходит в случае его переноса в область хромосом, где содержатся активно транскрибируемые гены иммуноглобулинов.

Функции генов-супрессоров противоположны функциям протоонкогенов. Гены-супрессоры оказывают тормозящее влияние на процессы клеточного деления и выхода из дифференцировки. Доказано, что в ряде случаев инактивация генов-супрессоров с исчезновением их антагонистического влияния по отношению к протоонкогенам ведет к развитию некоторых онкологических заболеваний. Так, потеря участка хромосомы, содержащего гены-супрессоры, ведет к развитию таких заболеваний, как ретинобластома, опухоль Вильмса и др.

Таким образом, система протоонкогенов и генов-супрессоров формирует сложный механизм контроля темпов клеточного деления, роста и дифференцировки. Нарушения этого механизма возможны как под влиянием факторов внешней среды, так и в связи с геномной нестабильностью - теория, предложенная Кристофом Лингауром и Бертом Фогельштейном. Питер Дюсберг из Калифорнийского университета в Беркли утверждает, что причиной опухолевой трансформации клетки может быть анеуплоидия (изменение числа хромосом или потеря их участков), являющаяся фактором повышенной нестабильности генома. По мнению некоторых ученых, ещё одной причиной возникновения опухолей мог бы быть врождённый или приобретённый дефект систем репарации клеточной ДНК. В здоровых клетках процесс репликации (удвоения) ДНК протекает с большой точностью благодаря функционированию специальной системы исправления пострепликационных ошибок. В геноме человека изучено, по крайней мере, 6 генов, участвующих в репарации ДНК. Повреждение этих генов влечёт за собой нарушение функции всей системы репарации, и, следовательно, значительное увеличение уровня пострепликационных ошибок, то есть мутаций.

Мутационная теория канцерогенеза - учение, согласно которому причиной возникновения злокачественных опухолей являются мутационные изменения генома клетки. В настоящее время эта теория является общепринятой. В подавляющем большинстве случаев злокачественные новообразования развиваются из одной опухолевой клетки, то есть имеют моноклональное происхождение. Согласно современным представлениям, мутации, которые в конце концов приводят к развитию опухоли, могут иметь место как в половых (около 5 % всех случаев), так и в соматических клетках.

Успехи современной генетики позволяют подойти к изучению состояния окружающей среды с позиций охраны наследственности, генофонда биосферы. Такому подходу уделяется специальное внимание в Программе ООН по окружающей среде (ЮНЕП), в деятельности Всемирной организации здравоохранения <ВОЗ) и ЮНЕСКО (в программе МАБ «Человек и биосфера», проект 12). По инициативе советских ученых было начато создание центра по генетическому мониторингу, в задачу которого входит и разработка доступных методов для оценки степени воздействия загрязнения окружающей среды на экосистемы и здоровье человека.

Между тем изменения в биосфере, преобразуемой человеком, порождают влияющие на ход генетических процессов неконтролируемые факторы. В числе их и мутационные эффекты, вызываемые загрязнением окружающей среды, приобретающим ныне все большие масштабы.

Основная опасность загрязнения окружающей среды мутагенами, как полагают генетики, заключается в том, что вновь возникающие мутации, не «переработанные» эволюционно, отрицательно повлияют на жизнеспособность любых организмов. И если поражение зародышевых клеток может привести к росту числа носителей мутантных генов и хромосом, то при повреждении генов соматических клеток возможно возрастание числа раковых заболеваний. Более того, существует глубокая связь различных на первый взгляд биологических эффектов.

В частности, мутагены окружающей среды влияют на величины рекомбинаций наследственных молекул, являющихся также источником наследственных изменений. Возможно и влияние на функционирование генов, что может быть причиной, например, тератологических отклонений (уродств), наконец, вероятны поражения ферментных систем, что изменяет различные физиологические особенности организма, вплоть до деятельности нервной системы, а следовательно, сказывается и на психике. Генетическая адаптация популяций человека к возрастающему загрязнению биосферы мутагенными факторами принципиально невозможна. Чтобы исключить или ослабить воздействие мутагенов, прежде всего необходимо оценить мутагенность различных загрязнений на высокочувствительных биологических тест-системах, в том числе и тех, которые могут поступить в биосферу, и если риск для человека доказан, то принимать меры для борьбы с ними.

Так возникает задача скрининга - просеивания загрязнений с целью выявления мутагенов и выработки специального законодательства для регулирования их поступления в окружающую среду. И таким образом, контроль генетических последствий загрязнения в комплексе содержит в себе две задачи: испытание на мутагенность факторов среды различной природы (скрининг) и мониторинг популяций. Применяется и цитогенетическая методика тестирования на культуре ткани растений, животных, лимфоцитах человека. Также и тест с использованием метода доминантных леталей (выявление мутаций, которые вызывают гибель эмбрионов на самых ранних стадиях развития) на млекопитающих, в особенности на мьи. ах. Наконец, используется и прямое тестирование мутаций в клетках млекопитающих и человека как в культуре ткани, так и in vivo.

К абиотическим факторам любой экосистемы относятся ионизирующее излучение и загрязняющие вещества. Токсичность и мутагенность среды - это два взаимосвязанных понятия. Одни и те же факторы среды могут оказывать и токсичное, и мутагенное действие. Токсичное действие проявляется вскоре после контакта с фактором, не более чем через месяц. Оно может выражаться в виде аллергии, ослабления иммунной системы, отравления, развития неврозов, возникновения неизвестных ранее патологий.

Гораздо чаще токсичность среды проявляется в виде устойчивых отклонений от нормального физиологического состояния организма у большого количества людей, которые заняты на вредном производстве или живут в прилегающих к предприятию районах.

Загрязняющие вещества чаще всего - это отходы производства и автомобильного транспорта: сернистый ангидрид, оксиды азота и углерода, углеводороды, соединения меди, цинка, ртути, свинца.

Загрязняющими веществами также могут быть химические соединения, созданные человеком, например пестициды, используемые для борьбы с вредителями сельскохозяйственных культур.

Мутагенность окружающей среды никогда не проявляется сразу после контакта с фактором. Опасность мутагенов для человека состоит в том, что их многократное и длительное контактное действие приводит к возникновению мутаций - стойких изменений в генетическом материале. С накоплением мутаций клетка приобретает способность к бесконечному делению и может стать основой развития онкологического заболевания (раковой опухоли).

Возникновение мутаций - процесс длительный и сложный, поскольку в клетках имеется надежная защитная система, которая противостоит мутационному процессу.

Развитие мутации зависит от дозы мутагена и длительности его действия, а также от того, насколько часто мутаген действует на организм, т.е. от ритма его действия. Процесс развития мутаций может быть растянут на годы.

На первом месте среди воздействий, вызывающих глубокие изменения генетического аппарата, стоит радиация. Наглядный пример мутагенного действия окружающей среды - развитие прогрессирующей лучевой болезни, которая заканчивается смертельным исходом у людей, по­лучивших высокую дозу радиации. Такие случаи встречаются редко. Обычно они обусловлены аварийными ситуациями, нарушением технологических процессов.

Радиационный распад, или явление радиоактивности, связан со способностью атомов отдельных химических элементов испускать частицы, несущие энергию. Основной характеристикой излучения, определяющей степень его воздействия на организм, является доза. Доза - это количество переданной организму энергии. Однако, при одинаковой поглощенной дозе, разные типы излучения могут иметь разный биологический эффект.

Под действием радиоактивного излучения в клетках происходит ионизация атомов и молекул, в том числе и молекул воды, что вызывает цепь каталитических реакций, приводящих к функциональным изменениям клеток. Наиболее радиочувствительны клетки постоянно обновляющихся органов и тканей: костного мозга, половых желез, селезенки. Изменения касаются механизмов деления, наследственного материала в составе хроматина и хромосом, регуляции процессов обновления и специализации клеток.

Радиация как мутагенный фактор вызывает повреждение генетического аппарата клеток: молекул ДНК, изменение кариотипа в целом. Мутации в соматических клетках облученного человека приводят к развитию лейкозов или других опухолей разных органов. Мутации в половых клетках проявляются в последующих поколениях: у детей и более отдаленных потомков человека, подвергшегося облучению. Генетические дефекты мало зависят от дозы и кратности облучения. Даже сверхмалые дозы радиации могут стимулировать мутации, иначе говоря, пороговая доза радиации отсутствует.

Опасность радиационного облучения связана с тем, что органы чувств человека не могут улавливать ни один из видов излучения. Установить факт радиоактивного заражения местности можно только приборами.

Радиационную опасность представляют старые захоронения, относящиеся к тому времени, когда радиационным проблемам еще не уделяли должного внимания. Опасные ситуации могут возникать при утилизации отработанного ядерного топлива от АЭС и атомных подводных лодок, при захоронении радиоактивных отходов, которые образовались после уничтожения ядерного оружия. Кроме того, радиоактивные отходы имеют множество промышленных предприятий, научных и медицинских учреждений

Радиация, связанная с развитием ядерной энергетики, составляет лишь малую долю, порождаемую деятельностью человека. Применение рентгеновских лучей в медицине, сжигание угля, длительное пребывание в хорошо герметизированных помещениях могут привести к значительному увеличению уровня облучения.

Избежать облучения ионизирующим излучением невозможно. Жизнь на Земле возникла и продолжает развиваться в условиях постоянного естественного облучения. Помимо техногенных радионуклидов свой вклад в радиационный фон Земли вносят космическое излучение и излучение от рассеянных в земной коре, воздухе и других объектах природных радиоактивных компонентов.

Мутагенными свойствами обладают не только различного типа излучения, но и многие химические соединения: естественные неорганические вещества (окислы азота, нитраты, соединения свинца), переработанные природные соединения (продукты сжигания угля, нефти, древесины, соединения тяжелых металлов), химические продукты, не встречающиеся в природе (пестициды, некоторые пищевые добавки, промышленные отходы, часть синтетических соединений).

Выраженным мутагенным действием в атмосфере городов обладают оксиды азота (III) и (V), которые при взаимодействии с атмосферной влагой образуют азотистую и азотную кислоты, а также выбросы дизельных двигателей; бензопирен, пыль асбеста, диоксины, - образующиеся при неконтролируемом сжигании твердых бытовых и промышленных отходов.

В составе гидросферы наиболее выраженным мутагенным действием обладают соли тяжелых металлов (никель, марганец) и пестициды.

В почве к числу химических мутагенов относятся соли тяжелых металлов и ме-таллорганических соединений, которыми почва загрязнена вдоль автомагистралей и в районах свалок мусора. Например, свинец - один из максимально опасных загрязнителей почв среди металлов. Он может накапливаться в организме человека, вызывая хронические отравления, проявляющиеся в истощении организма, нарушении работы почек, мышечной слабости, тяжелых расстройствах нервной и кровеносной систем. Употребление в пищу растений, грибов и ягод, собранных вблизи автомагистралей, может привести к пищевому отравлению свинцом, а через несколько лет эффект может проявиться в виде мутации.

В отличие от радиоактивного излучения химические мутагены оказывают действие только при непосредственном контакте с клетками организма. Они могут попасть на кожу, слизистые оболочки дыхательных путей, с продуктами питания оказываться в пищеварительной системе, а затем с питательными веществами перейти в кровь.


| | | | | 6 | | | | |