Все о тюнинге авто

Эффективность стерилизации оценивается по результатам исследований. Методы определения эффективности стерилизации

В последние годы отмечают появление и распространение патогенных микроорганизмов

высоко-резистентных к действию факторов окружающей среды. Поэтому ужесточаются спосо

бы стерилизации и особое значение придают правильному выбору режима стерилизации

тщательному контролю ее качества. При выборе режима стерилизации необходимо учитывать

исходную контаминацию, которую оценивают не только количественно, но и качественно,

определяя устойчивость микроорганизмов к стерилизующему фактору. Исходная контамина

ция изменяется в зависимости от времени года и источника сырья. Определение стерильности. V

готовой продукции путем выборочного контроля не дает гарантии стерильности всей партии

поэтому необходимо строго соблюдать режим стерилизации.

Контроль эффективности стерилизации осуществляют несколькими методами

(Воробьёв А.А.с соавт., 2002): По

1) по показаниям приборов (мановакуумметров, термометров, таймеров);

2) физико-химические тесты (вместе со стерилизуемым материалом в аппарат закладываются ампулы с кристаллами веществ, имеющие определенную точку плавления и меняющие

консистенцию или цвет при достижении определенной температуры стерилизуемого материала, например, антипирин - температура плавления 113°С, резорцин - 110°С, бензойную кислоту - 121 °С). В состав химических тестов вводят анилиновый краситель фуксин, генцианвиолет и др.), который равномерно окрашивает вещество при его расплавлении. Контроль режима стерилизации автоклавов химическим способом проводят при каждой загрузке автоклава. В настоящее время для контроля параметров режимов работы паровых и воздушных стерилизаторов используются специальные бумажные термометры.

Химические индикаторы одноразового применения, типа ИС (фирма «Винар», Россия),

представляющие полоску бумаги с нанесенным на нее слоем индикаторной смеси и пред-

назначенные для оперативного визуального контроля не только температуры, но и време-

стерилизации (ИС-120, ИС-132). Бумажные полоски закладываются в разных местах со

стерилизуемым материалом и после окончания цикла сверяют изменение окраски индика-

тора с эталоном. Если индикатор светлее эталона, стерилизуемые объекты подлежат по-

вторной стерилизации;

С 30 3) биологические тесты (в аппарат помещают флакончики с салфетками или бумажными дисками, пропитанными взвесью термостойкого спорообразующего микроба (Bacillus stearotermophilus) для контроля паровых или Bacillus licheniformis для контроля воздушных

I стерилизаторов) и после стерилизации их инкубируют в МПБ - прозрачный бульон, если

споры погибли, не должен мутнеть). Контроль режима стерилизации с использованием


Биотеста со спорами тест-культуры Bacillus stearotermophilus проводится еже-

квартально;

4) молекулярно-генетические методы контроля - генидикация могут использоваться в

случае оценки стерилизации в отношении трудно-культивируемых бактерий (анаэробная

группа) или вирусов. С этой целью применяют полимеразную цепную реакцию или об-

ратную гибридизацию ДНК с праймерами соответствующих видов микробов (Царёв В.Н.

с соавт., 2002).

Показателями эффективной работы стерилизационной аппаратуры являются: отсутствие

роста тест-культуры в сочетании с удовлетворительными результатами физического и химичекого контроля, либо отсутствие маркерных генов по данным ПЦР и гибридизации ДНК.

Контроль стерильности бактериологическим методом проводят путем прямого посева

(погружения) изделий в питательные среды (мелкие или детали разъемных изделий, инструменты - целиком, от шовного или перевязочного материала - отрезанные фрагменты) или (для крупных изделий) методом смывов. Материалом обязательно засевают две среды - тиогликолевую (для роста бактерий) и среду Сабуро (для роста грибов). Посевы на тиогликолевой среде выдерживают при 32°С, на среде Сабуро - при 22°С в течение 7 суток (для изделий после тепловой стерилизации). При отсутствии роста во всех пробирках (флаконах) делают заключение о стерильности изделий.

Р» и 7. Вид, штамм, колония, чистая культура микроорганизмов

Исследуемый материал от больного часто представляет смесь микроорганизмов. Выбор исследуемого материала зависит от вида заболевания и преимущественной локализации возбудителя на определенном этапе его развития (патогенеза). Материалом может служить кровь, ликвор, раневое отделяемое, мокрота, испражнения, моча и т.д.

При посеве исследуемого материала на питательные среды необходимо получить не смесь, а отдельные виды микроорганизмов. Микроорганизмы, находящиеся в питательной среде получили название культуры микроорганизмов. Культуры могут быть чистыми и смешанными. Поэтому основной задачей является разобщение культур и получение изолированных колоний. Изолированная колония, как результат размножения одной микробной клетки и состоящая из одного вида клеток, является основой для получения чистой культуры. Изучение и дальнейшая идентификация полученных культур микробов должна проводиться только в виде однородных популяций (чистых культур).

Под понятием «чистая культура» подразумевается популяция микроорганизмов, принадлежащих одному виду, полученная как потомство одной клетки на стерильной питательной среде методом механического разобщения. Культура может расти в виде отдельных колоний на плотной питательной среде. Штамм - это совокупность микробов одного вида, выделенных из одного источника в разное время или из разных источников.

Вид - совокупность микроорганизмов, имеющих единое происхождение и генотип, сходных по морфологическим и биологическим свойствам.

Таким образом, чистые культуры представлены микроорганизмами одного штамма и вида.

Популяция микробов, являющаяся потомством одной родительской клетки, полученная методом микроманипуляций, называется клоном. Клонирование бактериальных популяций возможно как на жидких, так и на плотных питательных средах.

Успех выделения чистой культуры определяется правильностью выбора питательной среды и условий культивирования. Универсальной питательной среды, использование которой позволит выделить любые микроорганизмы из любого исследуемого материала, не существует. Поэтому с учетом физиологических особенностей возможных возбудителей заболевания производится посев материала на определенную питательную среду или комплекс питательных сред (специальные, элективные, дифференциально-диагностические). Для некоторых микроорганизмов требуются и особые условия культивирования (анаэробные, микроаэрофильные, с повышенным содержанием углекислоты).

Бактерии характеризуются высоким темпом размножения на различных питательных средах, который характеризуется временем генерации.

Время генерации - это время между двумя делениями клетки, проходящее от момента появления клетки до момента деления (например, время генерации кишечной палочки - 20 мин, возбудителя туберкулеза - 14 час, табл. 16). Скорость размножения зависит от вида бактерий и условий культивирования (химического состава питательной среды, её агрегатного состояния, рН, температуры, аэрации, газового состава, наличия питательных веществ и стимуляторов роста и т.д.).

В последние годы отмечают появление и распростра­нение патогенных микроорганизмов, высоко-резистент­ных к действию факторов окружающей среды. Поэтому ужесточаются способы стерилизации и особое значение придают правильному выбору режима стерилизации и тщательному контролю ее качества. При выборе режима стерилизации необходимо учитывать исходную контами­нацию, которую оценивают не только количественно, но и качественно, т. е. определяя устойчивость микроорга­низмов к стерилизующему фактору. Исходная контами­нация изменяется в зависимости от времени года и источ­ника сырья. Определение стерильности готовой продук­ции путем выборочного контроля не дает гарантии стерильности всей партии, поэтому необходимо строго соблюдать режим стерилизации.

Контроль эффективности стерилизации осуществляют несколькими методами (А.А.Воробьёв с соавт., 2002):

1) по показаниям приборов (мановакуумметров, термометров, таймеров) Максимальные термометры, физико-химические и биотесты помещают в определенные точки аппарата.

2) физико-химические тесты (вместе со стерилизуемым материалом в аппарат закладывают ампулы с кристаллами веществ, имеющие определенную точку плавления и меняющие консистенцию или цвет при достижении определенной температуры стерилизуемого материала, например, антипирин - температура плавления 113°С, резор­цин- 110°С, бензойную кислоту- 121°С). В настоящее время для контроля параметров режимов работы паровых и воз­душных стерилизаторов используются специальные бумажные термохимические индикаторы одноразового применения, которые при нужной температуре стерилизации меняют цвет. Бумажные полоски закладываются в разных местах со стерилизуемым материалом и после окончания цикла сверяют изменение окраски индикатора с эталоном. Если индикатор светлее эта­лона, стерилизуемые объекты подлежат повторной стерилизации.

3) биологические тесты (в аппарат помещают флакончики с салфетками или бумажными дисками, пропитанными взвесью термостойкого спорообразующего микроба (Bacillus stearotermophilus для контроля паровых или Bacillus licheniformis для контроля воздушных стерилизаторов) и после стерилизации их инкубируют в МПБ - прозрачный бульон, если споры погибли, не должен мутнеть);

4) молекулярно-генетические методы контроля - гениндикация могут использоваться в случае оценки стерилизации в отношении трудно-культивируемых бактерий (анаэробная группа) или вирусов. С этой целью применяют полимеразную цепную реакцию или обратную гибридизацию ДНК с праймерами соответствующих видов микробов (В.Н.Царёв с соавт., 2002).

Показателями эффективной работы стерилизационной аппаратуры являются: отсутствие роста тест-культуры в сочетании с удовлетворительными результатами физического и химического контроля, либо отсутствие маркерных генов по данным ПЦР и гибридизации ДНК.

Контроль стерильности бактериологическим методом проводят путем прямого посева (погружения) изделий в питательные среды (мелкие или детали разъемных изделий, инструменты - целиком, от шовного или перевязочного материала - отрезанные фрагменты) или (для крупных изделий) методом смывов. Материалом обязательно засевают две среды - тиогликолевую (для роста бактерий) и среду Сабуро (для роста грибов). Посевы на тиогликолевой среде выдерживают при 32°С, на среде Сабуро - при 22°С в течение 7 суток (для изделий после тепловой стерилизации). При отсутствии роста во всех пробирках (флаконах) делают заключение о стерильности изделий.

Контроль эффективности стерилизации осуществляется физическими, химическими и бактериологическими методами.

К физическим методам контроля относятся: измерение температуры, давления и времени применения стерилизации.

Для проведения химического контроля на протяжении десятилетий применялись химические вещества, имеющие температуру плавления, близкую к температуре стерилизации. Такими веществами были: бензойная кислота - для паровой стерилизации; сахароза, гидрохинон и некоторые другие -для контроля воздушной стерилизации. Если происходило расплавление и изменение цвета указанных веществ, то результат стерилизации признавался удовлетворительным. Поскольку применение вышеуказанных индикаторов является недостаточно достоверным, в настоящее время внедрены в практику контроля термических методов стерилизации химические индикаторы, цвет которых изменяется под воздействием температуры, адекватной для конкретного режима, для определенного времени, необходимого для реализации данного режима. По изменению окраски индикаторов судят об основных параметрах стерилизации - температуре и продолжительности стерилизации. С 2002 года в России введен в действие ГОСТ РИСО 11140-1 «Стерилизация медицинской продукции. Химические индикаторы. Общие требования», в котором химические индикаторы распределены на шесть классов:

К 1 классу отнесены индикаторы внешнего и внутреннего процесса, которые размещаются на наружной поверхности упаковки с медицинскими изделиями или внутри наборов инструментов и операционного белья. Изменение цвета индикатора указывает на то, что упаковка подверглась процессу стерилизации.

Ко 2 классу относят индикаторы, которые не контролируют параметры стерилизации, а предназначенные для применения в специальных тестах, например, на основании таких индикаторов оценивают эффективность работы вакуумного насоса и наличие воздуха в камере парового стерилизатора.

К 3 классу относятся индикаторы, при помощи которых определяется один параметр стерилизации, например, минимальная температура. Однако они не дают информации о времени воздействия температуры.

К 4 классу относят многопараметровые индикаторы, изменяющие цвет при воздействии нескольких параметров стерилизации. Примером таких индикаторов являются индикаторы паровой и воздушной стерилизации одноразового применения ИКПВС-«Медтест».

К 5 классу относят интегрирующие индикаторы, реагирующие на все критические параметры метода стерилизации.

К 6 классу относят индикаторы-эмуляторы. Индикаторы откалиброваны по параметрам режимов стерилизации, при которых они применяются. Эти индикаторы реагируют на все критические параметры метода стерилизации. Эмулирующие индикаторы являются наиболее современными. Они четко регистрируют качество стерилизации при правильном соотношении всех параметров - температуры, насыщенного пара, времени. При несоблюдении одного из критических параметров индикатр не срабатывает. Среди отечественных термовременных индикаторов используются индикаторы «ИС-120», «ИС-132», «ИС-160», «ИС-180» фирмы «Винар» или индикаторы паровой («ИКПС-120/45», «ИКПС-132/20») и воздушной («ИКПВС-180/60» и «ИКВС-160/150») стерилизации одноразового применения ИКВС фирмы «Медтест».

Все операции с индикаторами - выемка, оценка результатов - осуществляются персоналом, проводящим стерилизацию.

Оценку и учет результатов контроля проводят, оценивая изменения цвета начального состояния термоиндикаторной метки каждого индикатора, сравнивая с цветовой меткой Эталона сравнения.

Если цвет конечного состояния термоиндикаторной метки всех индикаторов соответствует цветовой метке Эталона сравнения, это свидетельствует о соблюдении требуемых значений параметров режимов стерилизации в стерилизационной камере.

Допускаются различия в интенсивности глубины окраски термоиндикаторной метки индикаторов, обусловленные неравномерностью допустимых значений температуры в различных зонах стерилизационной камеры. Если термоиндикаторная метка хотя бы одного индикатора полностью или частично сохранила цвет, легко отличимый от цвета эталонного состояния, это свидетельствует о несоблюдении требуемых значений параметров режимов стерилизации в стерилизационной камере.

Индикаторы и Эталоны сравнения должны совпадать по номерам партий. Запрещается оценивать результаты контроля стерилизации, используя индикаторы разных партий.

Оценку соответствия изменения цвета термоиндикаторной метки в сравнении с Эталоном проводят при освещенности не менее 215 лк, что соответствует матовой лампе накаливания 40 Вт, с расстояния не более 25 см. Для проведения бактериологического контроля в настоящее время применяются биотесты, имеющие дозированное количество спор тест-культуры. Существующая методика позволяет оценивать эффективность стерилизации не ранее чем через 48 часов, что не позволяет применять уже простерилизованные изделия до получения результатов бактериологического контроля.

Биологический индикатор представляет собой препарат из патогенных споро-образующих микроорганизмов с известной высокой устойчивостью к данному типу стерилизационного процесса. Задачей биологических индикаторов является подтверждение способности стерилизационного процесса убивать устойчивые микробные споры. Это наиболее критичный и достоверный тест стерилизационного процесса. Применяются биологические индикаторы в качестве контроля загрузки: если результат положительный (микробный рост), то использовать данную загрузку нельзя и необходимо отозвать все предыдущие загрузки до последнего отрицательного результата. Для получения достоверного биологического ответа следует использовать только те биологические индикаторы, которые соответствуют международным стандартам ЕК 866 и ISO 11138/11135. При использовании биологических индикаторов возникают определенные трудности - необходимость наличия микробиологической лаборатории, обученного персонала, продолжительность инкубации многократно превышает длительность стерилизации, необходимость карантина (невозможность использования) простерилизованных изделий до получения результатов. Из-за указанных выше трудностей в применении биологического метода в амбулаторной стоматологической практике обычно используется физический и химический метод контроля эффективности стерилизации.

В комплексе мероприятий по стерилизации изделий медицинского назначения важное значение имеет организация и проведение контроля за ее эффективностью. Используемые до настоящего времени методы и средства контроля не всегда позволяют выявить дефекты стерилизации, что влечет за собой повышение уровня внутрибольничных инфекций.

Контроль эффективности работы стерилизационного оборудования осуществляется физическими, химическими и биологическим (бактериологическим) методами. Надежность этих методов неодинакова.

Контроль стерилизации

Физические и химические методы предназначены для оперативного контроля и позволяют контролировать соблюдение параметров режимов паровой, газовой, воздушной стерилизации, температуру, давление, экспозицию.

Недостаток этих методов заключается в том, что они не могут служить доказательством эффективной стерилизации. Достоверным для определения эффективности является только бактериологический метод.

Физические методы

Физические методы контроля осуществляются с помощью средств измерения температуры (термометры, термопары), давления (манометры, мановакуумметры) и времени (таймеры). Современные стерилизаторы оснащены также записывающими устройствами, фиксирующими отдельные параметры каждого цикла стерилизации.

Химические методы

В течение десятков лет для проведения химического контроля применялись химические вещества, изменяющие свое агрегатное состояние или цвет при температуре, близкой к температуре стерилизации (бензойная кислота для контроля паровой стерилизации, сахароза, гидрохинон и ряд других веществ — для контроля воздушной стерилизации).

При изменении цвета и расплавлении указанных веществ результат стерилизации признавался удовлетворительным.

Однако многолетние наблюдения и данные литературы указывают, что при удовлетворительных результатах химического контроля с помощью названных индикаторов, бактериологический контроль в ряде случаев (до 12%) выявляет неудовлетворительный результат стерилизации.

Кроме того, эти вещества имеют существенный недостаток. Переход их в другое агрегатное состояние не дает представления о продолжительности воздействия температуры, при которой происходит их расплавление.

Принимая во внимание недостаточную достоверность использования указанных индикаторов для контроля, а также значительную трудоемкость и неудобство их практического применения, в 70-х годах были разработаны химические индикаторы, изменение цвета которых происходит при воздействии температуры, принятой для данного режима, в течение времени, необходимого для стерилизации.

По изменению окраски этих индикаторов можно судить о том, что основные параметры процесса стерилизации — температура и время — выдержаны. Длительное применение таких индикаторов показало их высокую надежность.

Более сложные индикаторы предназначены для контроля критических параметров процесса стерилизации.

До конца 80-х годов не существовало стандартов на выпускаемые различными фирмами химические индикаторы и не было попыток классифицировать их. Лишь в 1995 году международная организация по стандартизации (ISO) опубликовала документ «Стерилизация медицинских изделий. Химические индикаторы. Часть 1».

С января 2002 года в России введен в действие ГОСТ Р ИСО 11140-1 «Стерилизация медицинской продукции. Химические индикаторы. Общие требования». Согласно этому документу химические индикаторы распределены на шесть классов.

Индикаторы 1-го класса являются индикаторами («свидетелями») процесса.

Примером такого индикатора является термоиндикаторная лента, наклеиваемая перед проведением стерилизации на текстильные упаковки или стерилизационные коробки.

Изменение цвета ленты указывает, что упаковка подверглась воздействию процесса стерилизации. Такие же индикаторы могут помещаться в наборы хирургических инструментов или операционного белья.

2-й класс индикаторов предназначен для использования в специальных тестовых процедурах, например, при проведении теста Бовье-Дика (Bowie-Dick test). Этот тест не контролирует параметры стерилизации, он оценивает эффективность удаления воздуха из камеры парового стерилизатора.

Индикаторы 3-го класса являются индикаторами одного параметра. Они оценивают максимальную температуру, но не дают представления о времени ее воздействия. Примерами такого рода индикаторов являются описанные выше химические вещества.

4-й класс — это многопараметровые индикаторы. Они содержат красители, изменяющие свой цвет при сочетанном воздействии нескольких параметров стерилизации, чаще всего — температуры и времени. Примером таких индикаторов служат термовременные индикаторы для контроля воздушной стерилизации.

5-й класс — интегрирующие индикаторы. Эти индикаторы реагируют на все критические параметры метода стерилизации. Характеристика этого класса индикаторов сравнивается с инактивацией высокорезистентных микроорганизмов.

6-й класс — индикаторы-эмуляторы. Эти индикаторы должны реагировать на все контрольные значения критических параметров метода стерилизации.

Биологический метод

Наряду с физическими и химическими применяется бактериологический метод контроля стерилизации. Он предназначается для контроля эффективности стерилизационного оборудования.

До недавнего времени для контроля паровой и воздушной стерилизации использовались пробы садовой земли, содержащей микроорганизмы, высокорезистентные к воздействию стерилизующих факторов.

Однако устойчивость микроорганизмов в различных пробах неодинакова, что не позволяет стандартизировать результаты контроля.

В настоящее время для проведения бактериологического контроля используются биотесты, имеющие дозированное количество спор тест-культуры. Контроль эффективности стерилизации с помощью биотестов рекомендуется проводить 1 раз в 2 недели. В зарубежной практике принято применять биологическое тестирование не реже 1 раза в неделю.

В ряде случаев возникает необходимость проведения контроля с помощью биотестов каждой загрузки стерилизатора. Прежде всего, речь идет о стерилизации инструментов, используемых для выполнения сложных оперативных вмешательств, требующих применения высоконадежных стерильных материалов.

Каждая загрузка имплантируемых изделий также должна подвергаться бактериологическому контролю. При этом использование простерилизованных материалов задерживается до получения отрицательных результатов контроля.

Тех же принципов при определении периодичности контроля рекомендуется придерживаться в отношении газовой стерилизации, являющейся по сравнению с другими методами более сложной.

Источник: http://steriliz.narod.ru/07contr.htm

Стерилизация: понятия, методы, режимы

Стерилизация – (от лат. Обеспложивание) – это полное уничтожение м/о и их спор путем воздействия как физических факторов, так и химических препаратов. Стерилизация проводится после дезинфекции ПСО и контроля качества ПСО. Стерилизация является важнейшим звеном, последним барьером профилактики ВБИ в ЛПУ. Она защищает пациента от любой инфекции.

Документы, регламентирующие способы стерилизации.

Необходимо помнить, что для проведения стерилизации, необходимо знать и уметь применять законы, инструкции, правила и др. инструктивно-методические документы в области инфекционной безопасности. В настоящее время действует отраслевой стандарт (ост. 42-21-8-85, определяющий методы, средства и режимы стерилизации и дезинфекции изделий мед.

назначения, который дополнен приказом №408 «Методическими указаниями по дезинфекции, ПСО и стерилизации, предметов медицинского назначения», утвержденный МЗ России 30 декабря 1998г. №МУ-287-113.

Эти документы являются обязательными и определяющими для всех ЛПУ и дают возможность широкого выбора средств и методов наиболее подходящих в условиях данного ЛПУ. Стерилизации подвергаются все изделия, соприкасающиеся с раневой поверхностью, контактирующие с кровью или инъекционными препаратами и отдельные виды мед.

инструментов, которые в процессе эксплуатации соприкасаются со слизистыми оболочками могут вызвать их повреждения. «Стерильность» — состояние медицинского изделия, когда оно не содержит жизнеспособных м/о.

Методы стерилизации различают:

  • физический (термический): паровой, воздушный, гласперленовый;
  • химический: газовый, химические препараты, радиационный;
  • плазменный и озоновый (группа химических веществ).

Выбор того или иного метода стерилизации зависит от свойств объекта и самого метода — его достоинств и недостатков.

Изделия в упаковке стерилизуют при децентрализованной или централизованной системах, а так же на промышленных предприятиях, выпускающих ИМН однократного применения.

Изделия без упаковки стерилизуют только при децентрализованной системе ЛПУ. Паровой и воздушный методы стерилизации – самые распространенные в ЛПУ.

Стерилизаторы: паровой, воздушный, газовый.

Паровой метод:

Надежный нетоксичный, недорогой, обеспечивает стерильность не только поверхности, но и всего изделия. Его осуществляют при сравнительно невысокой температуре, он обладает щадящим действием на обрабатываемый материал, позволяя стерилизовать изделия в упаковке, благодаря чему предупреждается опасность повторного обсеменения м/о.

Стерилизующий агент при этом методе – водяной насыщенный пар под избыточным давлением.

Режимы стерилизации:

  • 1-й режим (основной) – t 1320, 2 атм., 20` — предназначен для изделий из бязи, марли, стекла, включая шприцы с пометкой «2000С», изделий из коррозийно-стойкого металла.
  • 2-й режим (щадящий) – t 1200, 1,1 атм., 45` — рекомендуется для изделий из тонкой резины, латекса, полиэтилен высокой плотности.
  • 3-й режим — t 1340, 2 атм., 5`.

Условия проведения стерилизации: все изделия, стерилизуемые паром под давлением, предварительно помещают упаковку – стерилизационные коробки (биксы или контейнеры). С фильтром или без фильтров, крафт-пакеты и др. упаковку, предназначенную для паровой стерилизации.

Сроки хранения стерилизации изделий зависит от упаковки:

  1. изделия, простерилизованные в стерилизационных коробках без фильтра (КС) – 3 суток (72 часа);
  2. в стерилизационных коробках с фильтром (КФ) – до 20 суток, при условии ежемесячной смены фильтров;
  3. в двойной мягкой упаковке из хлопчатобумажной ткани, крафт-бумаги – 3 сут. (72 часа).

Недостатки метода:

  • вызывает коррозию инструментов из нестойких металлов;
  • превращаясь в конденсат, увлажняет стерилизуемые изделия, тем самым улучшая условия хранения и увеличивая опасность повторного обсеменения м/о.

Воздушный метод.

Стерилизующий агент – сухой горячий воздух. Отличительная особенность метода – не происходит увлажнения упаковки и изделий, и связанного с этим уменьшения срока стерильности, а так же коррозии металлов.

Режимы стерилизации:

  • 1-й режим (основной) — t 1800 – 60 мин. – предназначен для стерилизации изделий из стекла, включая шприцы с пометкой «2000С», изделий из металла, в том числе и коррозийно-стойких металлов.
  • 2-й режим (щадящий) — t 1600 – 150 мин. – предназначен для стерилизации изделий из силиконовой резины, а так же деталей некоторых аппаратов и приборов.

Условия проведения стерилизации: изделия стерилизуются без упаковки на сетках с упакованными в бумагу упаковочную, соответствующую требованиям действующего отраслевого стандарта.

Недостатки метода: медленное и неравномерное прогревание стерилизуемых изделий; необходимость использования более высоких температур; невозможность использования для стерилизации изделий из резины, полимеров; неосуществимость использовать все имеющие упаковочные материалы.

Примечания: стерилизации подвергают сухие изделия; изделия, простерилизованные в крафт-пакете, упаковке без бумаги мешочной влагопрочной, хранят – 3 сут.

(72 часа); в 2-слойной упаковке из бумаги крепированной для мед.

целей – до 20 суток; изделия, простерилизованные без упаковки, должны быть использованы непосредственно после стерилизации в течении рабочей смены (6 часов) в асептических условиях.

Гласперленовый метод. Стерилизуют цельнометаллические стоматологические, косметологические инструменты, погружая в среду стеклянных шариков, нагретых до 190-2500.

Источник: https://megaobuchalka.ru/8/32842.html

Контроль качества стерилизации

Надежность стерилизации определяют следующие факторы;

  • возможности и техническое состояние стерилизационной аппарату­ры;
  • соблюдение правил и режимов стерилизации;
  • качество предстерилизационной очистки’,
  • квалификация парамедиков;
  • выбор метода стерилизации.

К сожалению, до настоящего времени в РФ все еще используют индикато­ры плавления. К недостаткам можно отнести их приблизительное свидетель­ство о достижении требуемой температуры.

Несмотря на сложную финансовую ситуацию в стране, ЛПУ приобретают современные термовременные индикаторы стерилизации одноразового при­менения- «Винар», «Стерикинг», «Медтест», которые позволяют обеспечить достаточный контроль процесса стерилизации.

Методы контроля стерилизации могут быть:

  1. оперативными;
  2. долгосрочными.

1. Оперативные методы контроля - те, которые проводятся непосред­ственно после стерилизации.

Оперативные средства контроля:

  • визуальные средства;
  • манометры;
  • термометры;
  • вакуумметры;
  • максимальные термометры;
  • химические средства - стеклянные индикаторы (внутри находятся хими­ческие вещества, которые меняют свой цвет при определенной тем­пературе). Масса должна окрашиваться однородно!

Для паровых стерилизаторов:

  1. « Стериконт», «Стеритест» (лента) - 132 °С - 20 мин;
  2. «Винар» (лента) - 120 °С - 45 мин.

Для воздушных стерилизаторов:

  • «Винар» (лента) -180 °С - цвет «хаки»;
  • «Стерикинг» - 180 °С - черный.

Используют редко:

  • винную кислоту - 170 °С - стекает и становится белой;
  • гидрохинон -169 -171 °С - черный;
  • тиомочевину - 180 °С- ярко-желтый цвет.

В настоящее время, помимо термовременных индикаторов контроля стери­лизации «Винар», «Стерикинг», используют большое количество более совре­менных термовременных индикаторов.

Источник: https://studopedia.net/3_77236_kontrol-kachestva-sterilizatsii.html

Контроль качества и эффективность стерилизации

Контроль позволяет улучшить качество стерилизации в ЛПУ. Он предусматрива-ет определение эффективности и параметров стерилизации.

Надежность воздушной стерилизации зависит от конструкции стерилизатора, его исправности, схемы и объема загрузки, используемой защитной упаковки, применяе-мых методов оперативного и периодического контроля, подготовки персонала, обсу-живающего стерилизатор.

Проблема надежности особенно актуальна при эксплуатации аппаратов уста-ревших типов, при отсутствии доступных методов контроля стерилизации.

Контроль эффективности стерилизации в воздушном стерилизаторе осуществ-ляется бактериологическим методом и химическими термовременными индикаторами.

Бактериологический метод контроля проводят с помощью биотеста — объекта из определенного материала, обсемененного тест-микроорганизмами. В качестве носителей используют небольшой флакон, содержащий споры B.Licheniformis.

Конт-роль проводят в соответствии с утвержденной методикой. Существуют и готовые сертифицированные тесты со спорами B.

Licheniformis с цветными питательными средами, позволяющими провести бактериологический контроль непосредственно в ЦСО при наличии в нем термостата.

Контроль воздушной стерилизации химическими термовременными ин-дикаторами. Для оперативного контроля ранее рекомендовали многочисленные хи-мические вещества, точка плавления которых соответствует температуре стерилиза-ции.

Но на сегодняшний день всем ясно, что они не могут считаться надежными инди-каторами, поскольку не дают представления о времени воздействия горячего возду-ха на изделие.

Такой контроль носит ориентировочный характер и не гарантирует достижения стерильности в процессе стерилизации.

Надежность оперативного контроля существенно повышается при использова-нии индикаторов интегрированного действия, в частности, НП фирмы «Винар» ИС-160 и ИС-180, изменяющая окраску до цвета эталона только при воздействии на них температуры стерилизации в течение всей стерилизационной выдержки.

Полос-ки индикатора закладываются в контрольные точки стерилизатора при каждом цикле стерилизации. Если окраска индикатора после стерилизации в какой-либо точке свет-лее эталона, все изделия считаются нестерильными.

Пакеты из пергаментной бумаги, используемые для упаковки, при стерилизации в современной стерилизующей аппаратуре имеют подобный индикатор, нанесенный в фабричных условиях.

Надежность паровой стерилизации зависит от нескольких факторов:

  • соблюдения условий эксплуатации;
  • точности контрольно-измерительных приборов, установленных на стерилизаторе;
  • полноты удаления воздуха из стерилизуемых изделий;
  • герметичности камеры стерилизатора.

Методы периодического контроля паровых стерилизаторов изложены в системе «чистый инструмент». Они включают:

  • проверку точности манометра;
  • проверку точности регистрации самописцами температуры и давления;
  • контроль герметичности камеры стерилизатора;
  • контроль качества автоматического вакуум-теста;
  • контроль эффективности сушки текстильных материалов;
  • проверку полноты удаления воздуха из стерилизуемых изделий. Определение эффективности бактериологическим методом в паровом сте-рилизаторе осуществляется тестами, содержащими споры B.Stearothermophilus в соответствии с методикой, утвержденной МЗ РФ.

Оперативный контроль паровой стерилизации проводят химическими индика-торами интегрированного действия (термо-временными).

Индикаторы плавления (тиомочевина, бензойная кислота и др.), которые все еще используются в некоторых ЛПУ, не являются индикаторами стерильности, поскольку регистрируют только температуру, но не учитывают стерилизационную выдержку (время стерилизации).

Индикаторы фирмы «Винар» ИС-120 и ИС-132, также, как и в воз-душном стерилизаторе, изменяют окраску до учета эталона только при воздействии на них температуры стерилизации в течение всей стерилизационной выдержки.

При каждом цикле полоски индикатора закладываются в контрольные точки сте-рилизатора. Если окраска индикатора в какой-нибудь точке светлее эталона, все из-делия считаются нестерильными.

Источник: https://vuzlit.ru/828921/kontrol_kachestva_effektivnost_sterilizatsii

Химическая стерилизация

Химическая стерилизация наиболее проблематичный и трудоемкий способ стерилизации материала. Используется только тогда, когда другие способы применить не возможно. В основном химическая стерилизация используется для обработки аппаратов с тонковолокнистой оптикой (эндоскопическое оборудование, гортанные клинки и т.д.).

Требования к условиям проведения химической стерилизации:

  • Отдельное помещение с отделкой, позволяющей проводить влажные дезинфекционные работы: кафельное покрытие стен на всю высоту, плиточное покрытие пола, влагоустойчивое покрытие потолка.
  • Бактерицидное облучение проводится по режиму для помещений с асептическим режимом.
  • Наличие 2 раковин (для рук, для оборудования).
  • Наличие не менее 3 столов (разделение потоков технологического процесса).
  • Все емкости и дополнительные инструменты (шприцы, пинцеты, корнцанги) должны быть стерильными и использоваться только на одну обрабатываемую партию. Емкости используют из стекла, металлов, термостойких пластмасс, выдерживающих автоклавирование.
  • Персонал должен использовать стерильную спецодежду и средства защиты.

Для проведения химической стерилизации в кабинет доставляют инструментарий, прошедший дезинфекцию, предстерилизационную очистку, в сухом виде. Инструменты и аппараты погружают в емкость с химическим стерилянтом. Стерилизацию проводят при полном погружении. Свободно раскладывая инструменты, заполняя каналы раствором с помощью шприца.

При большой длине изделия их укладывают в емкость по спирали. Разъемные изделия стерилизуют в разобранном виде. По истечении времени экспозиции изделия вынимают из емкости с помощью стерильных пинцетов, сливая остатки стерилянта, и переносят в емкость со стерильной дистиллированной водой.

Каналы и емкости промывают стерильной водой с помощью шприца так, чтобы промывные воды не попадали в емкость со стерильной водой. Затем каналы заполняют стерильной водой и изделие оставляют в воде на 10-15 минут (время отмывки определяется методическими указаниями к препарату). По истечении времени процесс полностью повторяют в следующей емкости.

В каждой емкости работают отдельными шприцами и пинцетами. Затем, изделия выкладывают на отдельный стол в стерильную простыню. Канальные и длинные инструменты целесообразно просушивать с помощью стерильного спирта (промывание, протирание). В фармакопее существует пропись приготовления этилового спирта на стерильной воде в асептических условиях.

По окончании просушки стерильные изделия упаковывают в стерильный бикс, выложенный стерильной простыней или в 2-хслойную бязевую упаковку.

Сроки хранения материала, прошедшего химическую стерилизацию, составляет не более 3 суток от момента стерилизации упаковки.

Контроль качества стерилизации:

  • Визуальный контроль. Проверяют правильность использования упаковочных материалов, уровень загрузки упаковок и стерилизационных камер, обоснованность выбранного метода стерилизации.
  • Физический контроль. Оценивают показатели контрольно-измерительных приборов стерилизующей аппаратуры: максимальных термометров, монометров и уровень отклонения от нормативов. Вне упаковочного размещения и тест-индикаторы внутри упаковочного размещения.
  • Химический контроль. Осуществляют с помощью химических тест-индикаторов. На сегодняшний день необходимо испольозовать тест-индикаторы 4 поколения, которые позволяют контролировать все параметры стерилизации (давление, температура, время). Различают тест-индикаторы для контроля вне упаковки и внутри упаковки.

Следует помнить, что внутренние и внешние тест-индикаторы должны использоваться строго по назначению.

Внутренние индикаторы размещаются внутри упаковки на 3 уровнях при однородной укладке (при смешанной закладке – в каждый вид стерилизуемого материала помещают дополнительный тест).

Внутренние тест-индикаторы позволяют контролировать параметры стерилизации внутри упаковки. Внешние тест-индикаторы контролируют параметры стерилизации внутри стерилизационной камеры и размещаются в определенных точках камеры.

Тест-индикаторы оцениваются непосредственно после окончания стерилизации(внешние тест-индикаторы) и после вскрытия упаковки (внутренние тест-индикаторы).

Оцениваются все тест-индикаторы. При наличии одного тест-индикатора не соответствующего эталону материал считается не стерильным, и использоваться не может.

Правила закладки тест-индикаторов в стерилизационные упаковки:

  • в однородных укладках тест-индикаторы закладываются на три уровня (вниз-середина-верх);
  • в комбинированных укладках тест-индикаторы закладывают на три уровня (низ-середина-верх) и дополнительно в середину каждого вида материала;
  • в мягкие укладки малого объема допустимо закладывать одни тест-индикатор в середину укладки.

Тест-индикаторы хранятся все время работы укладки.

Ежеквартально проводят контроль работы стерилизационной паровой камеры с помощью стандартного модуля – параллепипед из 17 простыней размером: 300-300-900мм – «куклы».

«Кукла» — 9 внутренних тест-индикаторов. Которые закладывают по середине 17 простыней (между 8 и 9 простынями). Простыни заворачивают в двухслойную простыню и проводят полный цикл стерилизации в автоклаве.

Бактериологический контроль. С целью оценки эффективности стерилизации проводят бактериологические исследования с помощью биотестов и исследования смывов на стерильность.

Смывы на стерильность забирают с инструментов непосредственно после отработки режима стерилизации и с инструментов, подготовленных к работе (со стерильного стола или лотка). Забор смывов осуществляет медсестра непосредственно участвующая в работе со стерильным материалом.

Кратность исследований определяется требованиями приказа МЗ СССР №254 «О развитии дезинфекционного дела в стране». Для операционного блока, отделений реанимации исследования на качество стерилизации проводится 1 раз в 10 дней, для остальных режимных кабинетов – 1раз в месяц.

Контроль стерилизации с помощью биотестов проводится в рамках производственного контроля – ежеквартально. После ремонта стерилизующей аппаратуры контроль биотестами обязателен.

Материалы Второго научного симпозиума по значению биологических индикаторов для контроля стерилизации, состоявшегося в Москве 09 декабря 1998 г.

М.И. Леви, Ю.Г. Сучков, В.Я. Бессонова, Ю.С. Зуева, В.Г. Слизкова, М.М. Лившиц, Н.Н. Панкова, Г.И. Рубан, С.М. Савенко, А.П. Митюков, И.И. Корнев, А.И. Воронков
Испытательный лабораторный центр МГЦД, КБ УД Президента РФ,
Московская медицинская академия им. Сеченова, ЦКБ МЦ УД Президента РФ

Для расчета среднего значения числа жизнеспособных спор, приходящихся на один биологический индикатор, целесообразно воспользоваться распределением Пуассона. Линейный характер зависимости логарифма числа жизнеспособных клеток от времени стерилизации не подтверждается результатами экспериментов. Использование в экспериментах по контролю стерилизации значительного числа биологических индикаторов, высокоинформативной питательной среды и длительных сроков культивирования биологических индикаторов позволило обнаруживать в них жизнеспособные споры после стерилизации чаще, чем обычно и практически при всех употребляющихся в практике режимах. Высевы содержимого биологических индикаторов после стерилизации на плотную питательную среду подтвердили соответствие распределения чашек Петри по числу выросших колоний распределению Пуассона, а это означает случайное и изолированное распределение жизнеспособных спор в биологических индикаторах. В некоторых экспериментах число биологических индикаторов с жизнеспособными спорами после относительно длительных сроков стерилизации превышало число таковых после коротких сроков стерилизации, что не находило себе объяснения в рамках принятых представлений о стерилизации. Мы предположили, что стерилизация представляет собой затухающий волнообразный автоколебательный процесс, это и составляет сущность зависимости логарифма числа жизнеспособных спор в биологических индикаторах от времени стерилизации.
Контроль стерилизаторов, эксплуатируемых в лечебных учреждениях Москвы, показал, что во всех случаях остаются биологические индикаторы, содержавшие жизнеспособные споры после стерилизации. Рекомендованная в стандартах вероятность неудовлетворительных результатов анализа биологических индикаторов (10 -6) значительно меньше той, которая достигнута в наших исследованиях.
Экспериментальная паровая стерилизация отрезков трубочек из синтетических материалов после предстерилизационной очистки сопровождалась неблагоприятными результатами, аналогичными тем, которые были получены с биологическими индикаторами.
Число жизнеспособных спор в биологическом индикаторе после стерилизации является вероятностной величиной, а их обнаружение зависит от числа индикаторов в стерилизационной камере, качества питательной среды и длительности культивирования при подходящей температуре.

Адекватным инструментом оценки эффективности стерилизации являются биологические индикаторы, которые в значительной мере имитируют обсемененные микроорганизмами медицинские изделия, подвергающиеся стерилизации. Последняя избыточна в том смысле, что она рассчитана на уничтожение такого количества микробов, которые обычно на изделиях не обнаруживают, но которые в принципе хоть и в редких случаях исключить нельзя . Поэтому биологические индикаторы содержат устойчивые к стерилизующему агенту споры в количестве на 2-3 порядка выше того количества, которое обычно встречается на стерилизуемых изделиях . Такой подход диктуется массовым применением стерилизации в медицинской практике и необходимостью исключения риска заражения больных и здоровых за счет неэффективной стерилизации.

В связи с тем, что большинство исследователей придерживается убеждения, что логарифм числа микроорганизмов в биологическом индикаторе или на медицинских изделиях является линейной функцией времени стерилизации, то временные рамки могут быть рассчитаны с достаточной определенностью . К настоящему времени в практике применяются несколько видов стерилизации — паровая, горячевоздушная, газовая, радиационная, лучевая и некоторые другие. Известны крупные производители стерилизационной аппаратуры — «МММ», «Луки», «Джонсон и Джонсон» и др.

Мы задались целью определить оптимальные условия для применения биологических индикаторов в процессе стерилизации. Основным объектом исследований явились биологические индикаторы для оценки паровой стерилизации. Биологические индикаторы готовились и оценивались в нашей лаборатории в соответствии с принятыми нормами . Методические особенности настоящего исследования описаны в ходе изложения полученных результатов.

Всякий раз, когда готовится очередная партия спор Bacillus stearothermophilus для биологических индикаторов, контролирующих паровую стерилизацию, испытывают их термоустойчивость. Требуется, чтобы готовые биологические индикаторы (примерно 10 6 спор в индикаторе) содержали жизнеспособные споры после 5-минутной паровой стерилизации при 120-121 о С, но после 15 минутной стерилизации при указанных условиях таковых не содержали. Производственные серии биологических индикаторов, которые выпускает наше учреждение, отвечают этим требованиям. Наш опыт охватывает уже свыше 70 производственных серий спор В. stearothermophilus, из которых были изготовлены миллионы биологических индикаторов. Каждую серию биологических индикаторов неоднократно проверяли на термоустойчивость, в связи с чем накопился изрядный материал. Мы смогли убедиться в том, что к 15 минутам пребывания в автоклаве при 121 о С обычно жизнеспособные споры в биологических индикаторах не обнаруживаются, однако в редких случаях из 10 индикаторов (как правило, такое число индикаторов брали на одну экспозицию) 1 или 2 теста содержали живые споры.

В международных стандартах рекомендуется для определения числа спор в биологических индикаторах после разных экспозиций при 120-121 о С производить высевы содержимого индикаторов на плотную питательную среду, а затем культивировать в термостате и подсчитывать число колоний. Такую методику рекомендуют для тех экспозиций, где предполагается обнаружить число колониеобразующих единиц (КОЕ) больше 50 и меньше 1000 .

Для тех экспозиций, при которых предполагается среднее число спор в биологическом индикаторе менее 1 (то есть не в каждом индикаторе будут обнаружены жизнеспособные споры), рекомендовано использовать для подсчетов распределение редких и случайных событий — распределение Пуассона .

Ниже приведен способ применения распределения Пуассона для указанных целей.
Р х = e -m * m x /x!
где Р х — доля биологических индикаторов с конкретным числом жизнеспособных спор х;
х — конкретное число спор в индикаторе;
х! произведение целых чисел в последовательности х (х-1) (х-2)…[х-(х-1)];
m — среднее число спор в группе биологических индикаторов;
е — экспонента.

Если некоторое число биологических индикаторов не содержит жизнеспособных спор (х = 0), тогда
P 0 = k/n,
где k — число биологических индикаторов, не содержащих живые споры;
n — число биологических индикаторов в группе.

Прологарифмируем приведенное уравнение распределения Пуассона:
ln Р х = ln (e -m * m x /x!).

Учитывая, что 0! = 1, а m 0 = 1, то (ln k — ln n) = -m; m = ln n — ln k.

Иными словами, среднее число спор на один биологический индикатор в группе равно разности натуральных логарифмов числа всех биологических индикаторов и числа биологических индикаторов без живых спор. Справедливость приведенного способа определения среднего числа спор на один биологический индикатор подтверждается высевами на агар (рис. 8).

Рис. 8. Результаты испытания биологических индикаторов со спорами, высушенными на хроматографической бумаге (10 6 спора биологическом индикаторе, паровая стерилизация 121 о С — 45 мин., индикатор типа Attest). По оси ординат — число биологических индикаторов. Левый столбик — результаты испытаний для обычных биологических индикаторов, правый — для биологических индикаторов с новой питательной средой. Заштрихованная часть столбиков — число биологических индикаторов с жизнеспособными спорами.

Приводим пример расчетов. В стерилизационную камеру поместили 20 биологических индикаторов, а после экспозиции в каждый биологический индикатор прилили цветную питательную среду (используемые в нашей лаборатории серии питательной среды реагировали изменением цвета на присутствие единичных живых спор в биологическом индикаторе при культивировании в термостате при 55 o С) . Из 20 использованных в примере биологических индикаторов изменение сиреневого цвета питательной среды на желтый отмечено в 14, а в 6 индикаторах цвет среды остался прежним после культивирования в термостате. Отсюда m = (ln 20 — ln 6) = 2,996 — 1,792 = 1,204. Теперь если мы хотим включить эту величину m в систему координат десятичного логарифма числа спор в биологических индикаторах и времени необходимо взять lg m = lg 1,204 = 0,081.

При многочисленных определениях термоустойчивости спор изредка наблюдалось такое явление, когда 1-2 биологических индикатора из 10 содержали жизнеспособные споры после 15-минутного автоклавирования. В некоторых экспериментах мы расширили набор экспозиций, включив экспозиции в 20, 25, 30 и 35 мин. автоклавирования. В некоторых, хотя и редких случаях, мы отмечали существование живых спор в биологических индикаторах и после относительно длительных экспозиций автоклавирования. Трактовка подобных неожиданных результатов как случайных не могла быть признана правомочной, так как не имела объяснений. Наиболее правдоподобным выглядело предположение о существовании в популяции спор термоустойчивых особей, которые поэтому остаются жизнеспособными после длительных экспозиций. Однако это предположение не подтвердилось, так как потомство спор из пожелтевших биологических индикаторов после 20-40 — минутного автоклавирования обладали термоустойчивостью того же уровня, что и исходная взвесь спор .

К описанной проблеме прибавилась и другая, связанная с сомнениями в линейной зависимости логарифма числа спор в биологическом индикаторе от времени стерилизации . Складывалось впечатление, что если и наблюдается линейная зависимость, то она проявляется лишь на отдельных участках графика. Что касается сроков изменения окраски питательной среды в биологических индикаторах после автоклавирования, то в практической деятельности они ограничивались 48 часами (такой срок рекомендован в инструкциях, имеющих хождение в России, США и европейских странах, хотя еще 10 лет тому назад, когда не использовались цветные среды, наблюдение за появлением мутности в питательном бульоне длилось не менее 7 дней). Однако в наших экспериментах было замечено, что изменение цвета питательной среды при культивировании в термостате наступает не только в первые 48 час., но и в последующие дни, особенно в тех биологических индикаторах, которые относительно долго пребывали в стерилизационной камере.

Если в прежние годы мы использовали в качестве носителя спор инсулиновые флаконы, то в последнее время перешли на пробирки Эппендорфа из полипропилена емкостью 1,5 мл . Эта емкость оказалась гораздо удобнее в качестве носителя спор, чем инсулиновые флаконы.

Учитывая все вышесказанное, мы решили применить в настоящем исследовании биологические индикаторы, приготовленные следующим образом. Взвесь спор, которую мы использовали для изготовления производственных серий биологических индикаторов, разводили дистиллированной водой таким образом, чтобы в 0,02 мл оказалось нужное число спор, которое и вносилось в каждую пробирку Эппендорфа. Затем биологические индикаторы оставляли на 24 час. при 37 о С для высушивания спор, после чего биологический индикатор (пробирку Эппендорфа оставляли открытой) помещали в специальный пакет фирмы Wipack medical, снабженный бумажным ранним индикатором процесса стерилизации. После автоклавирования в каждый индикатор приливали 0,5 мл цветной питательной среды и помещали в термостат при 55 о С на 7 дней с ежедневной регистрацией изменения цвета питательной среды на желтый. Если это случалось, то признавали существование жизнеспособных спор на момент окончания времени автоклавирования.

Легко убедиться в том, что число биологических индикаторов, в которых удавалось обнаружить жизнеспособные споры, зависело от исходного числа индикаторов, помещенных в стерилизационную камеру. Если биологические индикаторы имитируют обсемененные микроорганизмами медицинские изделия, то мы вправе заподозрить, что доля биологических индикаторов с жизнеспособными спорами после стерилизации может соответствовать доле оставшихся нестерильными медицинских изделий. В этом и есть смысл применения контроля стерилизации с помощью биологических индикаторов. Но их число не может быть увеличено до больших чисел, во всяком случае до числа стерилизуемых медицинских изделий. При принятых в России нормах в относительно небольших автоклавах размещают по 5 биологических индикаторов, а в больших — до 13 . Нам представляется, что обозначенного числа биологических индикаторов для изучения пороков стерилизации явно недостаточно, поэтому в представленных ниже экспериментах для контроля стерилизации использовали гораздо большее число индикаторов.

Итак, в наших экспериментах использовали не только большее, чем обычно число биологических индикаторов, но и дольше наблюдали их после стерилизации во время культивирования в термостате. Наконец, мы использовали не только то число спор в индикаторе, которое рекомендовано в стандартах (10 6 спор), но и несколько меньшее (10 5), и несколько большее (10 7). В стерилизационную камеру автоклава в большинстве случаев кроме биологических индикаторов ничего не помещали, чтобы избежать упреков в избыточном заполнении камеры.

Данные, представленные на рис. 1, свидетельствуют о том, что единичные индикаторы содержали жизнеспособные споры даже после 120-минутного автоклавирования (само собой разумеется, что при использовании 5 или 10 биологических индикаторов этот факт не был бы «замечен»). В данном опыте использовали споры двух штаммов В. stearothermophilus — ВКМ-718 (производственный штамм, применяющийся не только в России, но и в других странах, а также недавно выделенный штамм КК , обладающий повышенной термоустойчивостью). Неожиданным оказалось то обстоятельство, что иногда индикаторы с жизнеспособными спорами встречались после 45 или 60 мин. автоклавирования не реже, чем после 30-минутной стерилизации.

Споры В. stearothermophilus
ВК-718 КК
10 7 2,2*10 6
10 6 1,1*10 6
10 5 0,7*10 6

Рис. 1. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus (штаммы ВК-718 и КК). По оси ординат — число биологических индикаторов на каждую экспозицию (25 биологических индикаторов), по оси абсцисс — время стерилизации (мин.). Закрашенная часть столбиков — число биологических индикаторов с жизнеспособными спорами.

Расхождение полученных данных с ожидаемыми заставило нас разработать новую питательную среду, возможности которой в проявлении жизнеспособных спор в биологических индикаторах, прошедших стерилизацию, были гораздо выше, чем у прежней питательной среды.

Наряду с прежней питательной средой испытали две новых рецептуры, причем одна из них оказалась весьма информативной (рис. 2).


Рис. 2. Влияние питательной среды на проявление жизнеспособности спор В. stearothermophilus в биологических индикаторах (носители — инсулиновые флаконы или пробирки Эппендорфа) после стерилизации паром (121 o С — 45 мин.). n — число биологических индикаторов в каждой экспозиции, закрашенная часть столбиков — число биологических индикаторов с жизнеспособными спорами. А — эксперименты с производственной серией 71, число спор в биологическом индикаторе 3,4*10 5 , Б — эксперименты с производственной серией 69, число спор в биологическом индикаторе 10 6 . Номерами 1, 2, 3 обозначены пробы с разными питательными средами.

Таким образом, наряду с повышенным числом биологических индикаторов, удлинением сроков наблюдения за культивируемыми в термостате индикаторами, использовали не только принятую питательную среду, но и новую среду, которая оказалась более информативной, чем прежняя. Не лишне упомянуть, что в один пакет помещали три биологических индикатора с разным числом спор, пакеты размещали в стерилизационной камере случайным образом, после стерилизации биологические индикаторы одновременно заливали одной и той же серией питательной среды и оставляли в одном и том же термостате. Если употребляли прежнюю и новую питательные среды, то число пакетов удваивалось.

Если в прежних опытах автоклавировали биологические индикаторы при 121 o С в течение 45 мин., то в опыте, представленном на рис. 3, биологические индикаторы стерилизовали паром при температуре 132 o С (оба режима осуществляли в автоклаве отечественного производства ВК-75).

Рис. 3. Влияние стерилизации паром при 132 o С на биологические индикаторы в зависимости от исходного числа спор в них (10 5 , 10 6 и 10 7 и времени автоклавирования биологических индикаторов (5, 10, 20, 40 и 60 мин.). По оси ординат — число биологических индикаторов в опыте. В каждой паре столбцов слева — результаты определения числа биологических индикаторов с жизнеспособными спорами при их культивировании в обычной питательной среде, справа — число биологических индикаторов с жизнеспособными спорами при их культивировании в новой питательной среде. Закрашенная часть столбика — число биологических индикаторов с жизнеспособными спорами.

В представленных на рис. 3 данных употребляли различные экспозиции, в числе их и ту (20 мин.), которая рекомендована в соответствующем режиме. Можно отметить, что с помощью новой питательной среды, а иногда даже и с применением прежней, удалось обнаружить жизнеспособные споры в биологических индикаторах после автоклавирования в течение 20-60 мин. Более того, складывается впечатление, что время автоклавирования в указанных на рис. 3 пределах, не очень заметно сказалось на доле биологических индикаторов с жизнеспособными спорами.

Полученные результаты анализа биологических индикаторов после стерилизации побудили нас охарактеризовать те режимы паровой стерилизации, которые приняты в России (рис. 4). Первые два режима осуществлены в аппарате ВК-75, а третий и четвертый — в аппарате фирмы «МММ» (Германия). Само собой разумеется, что все стерилизационные аппараты, использованные в наших исследованиях, находились в полной технической исправности.

Рис. 4. Влияние питательной среды на результаты бактериологического контроля стерилизации. По оси ординат — число биологических индикаторов в опыте. Над каждой парой столбиков указано исходное число спор в биологических индикаторах. В каждой паре столбцов слева — результаты определения числа биологических индикаторов с жизнеспособными спорами при их культивировании в обычной питательной среде, справа — число биологических индикаторов с жизнеспособными спорами при их культивировании в новой питательной среде. Закрашенная часть столбика — число биологических индикаторов с жизнеспособными спорами. Режимы стерилизации приведены над столбиками.

Легко заметить, что ни один из испытанных режимов стерилизации не сопровождался полным освобождением биологических индикаторов от жизнеспособных спор В. stearothermophilus, особенно при употреблении новой питательной среды. Нужно отметить, что процент биологических индикаторов с жизнеспособными спорами несколько увеличивается, если наблюдение за цветом прежней питательной среды в термостате вести не 48 час., а 72 час. (рис. 5, по данным рис. 1 для штамма ВКМ-718).

Рис. 5. Динамика пророста биологических индикаторов (10 5 , 10 6 , 10 7 спор в биологических индикаторах) после автоклавирования при 121 o С в течение 30, 45, 60, 90 и 120 мин. На каждую пробу брали 25 биологических индикаторов. Учет пророста биологических индикаторов вели через 18, 24, 48 и 72 часа их культивирования при 55 o С. Столбики указывают число биологических индикаторов с жизнеспособными спорами на данный срок учета результатов.

Применение новой питательной среды явно ускоряет после стерилизации появление максимального числа биологических индикаторов с жизнеспособными спорами при культивировании в термостате при 55 o С (рис. 6).

Рис. 6. Динамика пророста биологических индикаторов (по 10 5 или 10 6 спор в биологических индикаторах) после автоклавирования (121 o С, 45 мин.). На каждую пробу брали 20 биологических индикаторов. Учет пророста вели через 18, 24, 48 или 120 час. культивирования при 55 o С в разных питательных средах.

Оказалось, что и газовая стерилизация с помощью формальдегида (аппарат фирмы «МММ», Германия) не освобождает биологические индикаторы от жизнеспособных спор В. stearothermophilus (рис. 7.)

Стерилизация формальдегидом 75 o С — 10 мин.




Рис. 7. Влияние питательной среды на результаты бактериологического контроля стерилизации. Обозначения в верхней части рисунка — те же, что и на рис. 4. В нижней части рисунка представлена динамика пророста биологических индикаторов. Под столбиками — время культивирования в сутках. Обозначения — те же, что и на рис. 5.

Тем не менее результаты стерилизации формальдегидом, по крайней мере при использовании прежней питательной среды, выглядят несколько лучше, чем результаты контроля паровой стерилизации.

В наших опытах споры в биологических индикаторах высушивались непосредственно в пробирках Эппендорфа, в то время как в американских биологических индикаторах (Attest) фирмы «3М» споры высушивались на полосках бумаги и в таком виде вносились в пластмассовые емкости, которые снабжены ампулой с цветной питательной средой. После стерилизации ампулу разбивают простым нажатием на корпус индикатора, питательная среда изливается на бумагу с высушенными спорами, а затем при культивировании в термостате удается зафиксировать жизнеспособные споры, если цвет среды меняется на желтый . Мы изготовили некоторое подобие индикатора Attest и проявили их с прежней и новой питательными средами. Оказалось, что применение новой питательной среды заметно улучшило результаты биологического индикатора, аналогичного Attest.

Итак, в наших экспериментах мы, как правило, вносили 120 биологических индикаторов (каждый пакет с биологическими индикаторами занимал объем около 0,1 л) с разной исходной концентрацией спор. Половину индикаторов исследовали с прежней питательной средой, а другую половину — с новой. В большинстве случаев те биологические индикаторы, которые исследовали с помощью новой питательной среды, после автоклавирования вначале заполнялись небольшим объемом жидкости. Половина этого объема использовалась для засева на питательный агар, а к остальной части добавляли питательную среду. Культивирование осуществляли в термостате при 55 o С. Выросшие колонии подсчитывали.

Эти наблюдения послужили основанием для сопоставления распределения чашек Петри с агаром по числу выросших колоний с теоретическим распределением Пуассона (наличие чашек без выросших колоний позволяло исчислить среднее значение числа колоний на одну чашку, а затем по таблицам определить теоретическое распределение и сопоставить его с наблюдаемым в эксперименте). Мы исходили из положения о том, что сумма пуассоновских распределений есть тоже пуассоновское распределение; в подсчеты включали данные по всем трем группам биологических индикаторов (10 5 , 10 6 , 10 7). Поэтому в каждой группе оказалось 60 чашек Петри.

Из данных, представленных на рис. 9., следует, что при всех изученных режимах распределение чашек Петри по числу выросших колоний соответствовало распределению Пуассона. А это, в свою очередь, говорит о том, что оставшиеся после стерилизации жизнеспособные споры представляли собой отдельные независимые друг от друга сущности. Исключение составили данные по режиму паровой стерилизации 121 o С — 45 мин., где теоретическая кривая существенно отклонялась от полученной в эксперименте. В этом последнем случае приходится признать, что указанные расхождения связаны с образованием комочков или глыбок спор в биологическом индикаторе, которые распадаются на отдельные споры при рассеве содержимого на поверхности агара. Так или иначе, но не возникает сомнения, что после стерилизации жизнеспособными в биологических индикаторах остаются единичные споры, в то время как подавляющая масса спор погибает. По крайней мере такая картина вырисовывается при избранном числе биологических индикаторов, помещенных в стерилизационную камеру.

Рис. 9. Соответствие фактических материалов (число колоний на агаре) при разных режимах паровой и газовой стерилизации распределению редких и случайных событий. По оси ординат — общее число биологических индикаторов стерилизации (суммирование результатов для трех групп биологических индикаторов с 10 5 , 10 6 и 10 7 спорами). По оси абсцисс — число КОЕ (колониеобразующих единиц), выросших на агаре после посева материала биологических индикаторов. Сплошная линия — фактические данные, прерывистая линия — расчетная линия в соответствии с распределением случайных и редких событий (отсутствие на графике прерывистой линии указывает на совпадение расчетных и экспериментальных данных).

Одним из поражающих воображение парадоксов является существенное отклонение экспериментальных данных от линейной зависимости логарифма числа спор в биологических индикаторах от времени стерилизации. Совершенно не соответствовали сложившимся представлениям данные об обнаружении жизнеспособных спор в более поздние от начала стерилизации сроки. И уж совсем не укладывались в сознание данные о более частом обнаружении жизнеспособных спор в более поздние сроки, чем в ранние, что отмечалось в некоторых экспериментах. Случалось даже такое, когда при 15-минутной экспозиции споры в биологических индикаторах нежизнеспособны, а после 45-минутной экспозиции в том же опыте обнаруживаются хоть и единичные, но жизнеспособные споры.

В настоящей работе мы представляем свою интерпретацию процесса гибели спор при стерилизации. Приводимое здесь предположение не имеет пока достаточных доказательств, однако объясняет упомянутый выше парадокс.

Мы предполагаем, что зависимость логарифма числа спор в биологических индикаторах от времени стерилизации носит не линейный, а волнообразный характер. По данным рис. 1 мы дали свою интерпретацию зависимости логарифма числа спор от времени стерилизации, воспользовавшись теми средними величинами числа спор в биологических индикаторах, которые были исчислены с помощью распределения Пуассона (рис. 11, 12). Но вначале мы представляем зависимость зоны определения средних величин от числа биологических индикаторов (рис. 10).

Рис. 10. Область применения распределения Пуассона для определения средних значений (m) при различном числе биологических индикаторов в группе (числа в середине рисунка).

Рис. 11. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus, штамм ВК-718. Волнообразные кривые — интерпретация фактических данных. По оси ординат — десятичный логарифм средней концентрации спор в биологическом индикаторе, по оси абсцисс — время стерилизации (мин.). Горизонтальные прямые ограничивают область применения распределения Пуассона для определения средних значений.

Рис. 12. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus, штамм КК. Волнообразные кривые — интерпретация фактических данных. По оси ординат — десятичный логарифм средней концентрации спор в биологическом индикаторе, по оси абсцисс — время стерилизации (мин.). Горизонтальные прямые ограничивают область применения распределения Пуассона для определения средних значений.

Для определения средней величины необходимо иметь биологические индикаторы без жизнеспособных спор, а для обозначения границ зоны значений средних нужно, чтобы хотя бы один биологический индикатор содержал жизнеспособные споры, или, напротив, чтобы хотя бы один биологический индикатор оказался без жизнеспособных спор. Из сопоставления различных зон можно заключить, что с увеличением числа биологических индикаторов в наибольшей мере увеличиваются возможности нижней зоны, в то время как верхняя ее часть расширяется незначительно. Распределение Пуассона табулировано, а использование вышесказанного позволяет рассчитать необходимое число биологических индикаторов, которое позволяет надеяться на обнаружение гораздо большего числа жизнеспособных спор после стерилизации.

Представление фактических данных с помощью волнообразных кривых позволяет понять, почему в некоторых экспериментах столь причудливо выстраиваются на графиках биологические индикаторы с жизнеспособными спорами. Ведь выбор точек на оси времени носит случайный характер, не связанный с закономерностями гибели спор, не учитывающий предполагаемый волнообразный характер. Более того, вполне может случиться, что нижняя. часть волны в районе 15 мин. может оказаться за пределами возможности обнаружения в биологических индикаторах (при избранном их количестве) жизнеспособных спор, в то время как при более длительной экспозиции выбор временной точки совпал с верхней частью волны и позволил обнаружить биологические индикаторы с жизнеспособными спорами.

Мы полагаем, что зависимость между логарифмом числа спор в биологическом индикаторе от времени стерилизации отражает затухающий волнообразный автоколебательный процесс, связанный с тем, что не только споры, но и окружающие их условия определяют результат стерилизации.

В нижеследующей таблице собраны результаты контроля различных видов стерилизации с помощью биологических индикаторов в аппаратах, используемых в практических лечебных учреждениях по тем режимам, которые предусмотрены существующими стандартами. Мы использовали полный цикл стерилизации, значительное число биологических индикаторов, длительное их культивирование после стерилизации, прежнюю и новую питательные среды.

Сводная таблица результатов биологического контроля стерилизации


п/п
Стерилизационный аппарат Стерилизация Биологические индикаторы
наименование фирма-
производитель,
страна
год
выпуска
объем
стерили-
зационной
камеры
вид режим тест-
культура
число
спор
число
индика-
торов в
стерилизац.
% с
жизнеспо-
собными
спорами
после
стерилизац.
обычная
питат.
среда
новая
питат.
среда
1. ГК-100-ЗМ Тюменский з-д
медоборудования,
Россия
1993 100 л Паровая 121 o С,
45 мин.
В. stearo-
themophilus
10 6 40 0 10
2. « « « « « « « « 40 10 25
3. BK-75 « « 75 л « « « 3*10 5 120 20 45
4. « « « « « « « 10 6 60 25 65
5. « « « « « « « 10 5 80 25 75
10 6 80 3 100
10 7 80 13 100
6. « « « « « « « 10 5 75 0 7
10 6 75 0 8
10 7 75 20 20
7. « « « « « « « 10 5 75 0 12
10 6 75 0 13
10 7 75 20 22
8. ГК-100-ЗМ « « 100 л « « « 10 5 40 15 20
10 6 40 0 15
10 7 40 0 35
9. BK-75 « 1992 75 л « 121 o С,
45 мин.
« 10 5 40 0 5
10 6 40 0 25
10 7 40 0 25
10. « « « « « « « 10 6 40 20 50
10 7 40 5 60
11. BK-75 « 1992 75 л Паровая 121 o С,
45 мин.
В. stearo-
themophilus
10 5 40 30 95
10 6 40 50 90
10 7 40 15 100
12. « « « « « « « 10 4 40 35 75
10 6 40 25 35
10 7 40 50 40
13. ГК-100-3М**) « 1988 100 л « « « 10 5 40 10 10
10 6 40 10 10
10 7 40 10 15
14. ГК-100-3М**) « « « « « « 10 5 40 5 0
10 6 40 0 10
10 7 40 5 0
15. ГКД-560 «ЛАД»,
Россия
1996 560 л « 120 o С,
20 мин.
10 5 40 10 5
10 6 40 55 10
10 7 40 65 55
16. Секурокс «МММ»,
Германия
1993 0,5 м 3 « « « 10 5 40 15 30
10 6 40 20 45
17. « « « « « « « 10 5 40 25 70
10 6 40 10 75
18. « « « « « « « 10 5 40 10 80
10 6 40 0 80
10 7 40 10 75
19. Castle
м/с 3622
USA 1997 680 л « « « 10 5 40 0 0
10 6 40 0 5
10 6*) 0 0
10 7 40 0 0
20. Селектомак «МММ»,
Германия
1993 100 л Паровая « « 10 5 40 0 0
10 6 40 0 10
10 7 40 5 20
21. ГК-100-3М**) Тюм. з-д
медооор.,
Россия
1993 100 л « 132 o С,
20 мин.
« 10 5 40 0 0
10 6 40 0 5
10 7 40 10 0
22. ВК-75 « 1992 75 л « « « 10 5 40 5 40
10 6 40 5 60
10 7 40 5 75
23. Селектомак «МММ»,
Германия
1993 100 л Паровая 134 o С,
5 мин.
В. stearo-
themophilus
10 5 40 0 0
10 6 40 0 20
10 7 40 5 10
24. ГКД-560 «ЛАД»,
Россия
1996 560 л Паровая 134 o С,
5 мин.
« 10 5 40 45 25
10 6 40 50 35
10 7 40 35 100
25. Секурекс «МММ»,
Германия
1993 500 л « « « 10 5 40 20 55
10 6 40 20 45
10 7 40 10 70
26. Castle
м/с 3622
USA 1997 680 л « 134 o С,
10 мин.
« 10 5 40 0 0
10 6 40 0 20
10 6*) 20 0
10 7 40 20 25
27. « « « « « « « 10 5 40 0 25
10 6 40 5 15
10 7 40 5 30
28. Комбимак «МММ»,
Германия
1993 70 л Газовая
(формаль-
дегид)
75 o C,
10 мин.
« 10 5 40 5 20
10 6 40 10 45
10 7 40 5 20

Примечание: *) — Для контроля применили биологические индикаторы Biosign фирмы Castle, содержащие фирменную питательную среду.
**) — Накануне испытаний поставлена новая стерилизационная камера.

Самым общим признаком результатов контроля стерилизации является то, что не удалось убедиться в стерильности всех биологических индикаторов по окончании времени стерилизации. Таким образом, этот важнейший контроль свидетельствует о неэффективности в принятом смысле стерилизации, причем наиболее надежной паровой стерилизации. Так как доза 10 7 спор в биологическом индикаторе может быть признана чрезмерно высокой, то целесообразно рассмотреть отдельно результаты контроля стерилизации биологическими индикаторами, содержавшими 10 5 и 10 6 спор. При использовании новой питательной среды какая-то часть биологических индикаторов после стерилизации во всех случаях содержала жизнеспособные споры. Если же использовали прежнюю питательную среду, то в трех случаях при контроле аппарата ВК-75 (30%) биологические индикаторы не содержали жизнеспособных спор. Чаще подобные результаты отмечены при контроле аппаратов зарубежного производства и это может служить некоторым указанием на качественное превосходство над российскими автоклавами.

Причины сложившейся ситуации неясны, как и возможные предложения по совершенствованию стерилизации. Что касается применения бумажных индикаторов стерилизации, то вряд ли следует рассчитывать на большее, нежели контроль состояния некоторых технических характеристик стерилизационного аппарата, особенно вначале процесса. Полное доверие показаниям бумажных индикаторов может способствовать ложному заключению об эффективной стерилизации.

До сих пор речь шла о судьбе биологических индикаторов в процессе стерилизации, что может не во всех случаях отражать особенности реальной стерилизации медицинских изделий. Для стерилизации в качестве «медицинских изделий» брали отрезки трубочек из поливинилхлорида длиной в 1 см, после тщательной промывки их обсеменяли спорами В. stearothermophilus в объеме 0,02 мл, высушивали и подвергали предстерилизационной очистке кипячением в 2% растворе соды в течение 15 мин. . После отмывки в стерильной дистиллированной воде отрезки трубочек на следующий день стерилизовали в пакетах (121 o С — 45 мин.), после чего каждый отрезок помещали в стерильную пробирку Эппендорфа и заливали питательной средой. Культивирование отрезков проводили в термостате при 55 o С. Контрольные отрезки обсеменяли спорами, но не подвергали предстерилизационной обработке. Иными словами, в этом опыте подражали экспериментам с биологическими индикаторами.

Полученные результаты поражают своей неожиданностью — отрезки трубочек, обработанные раствором соды при 100 o С, оказались после стерилизации столь же обсемененными, что и не подвергавшиеся предварительной очистке, которая в настоящее время занимает важное место в методике стерилизации .

Рис. 13. Результаты стерилизации отрезков трубки из поливинилхлорида после их предстерилизационной очистки и без нее. В каждой паре столбиков слева — число отрезков трубки с жизнеспособными спорами при культивировании с обычной питательной средой, справа — с новой питательной средой. Цифры над столбиками — число спор В. stearothermophilus, нанесенных изначально на внутреннюю поверхность отрезков трубки.

В другом опыте отрезки трубочек из силиконовой резины размером в 1 см после тщательной промывки в дистиллированной воде обсеменяли спорами В. stearothermophilus, затем оставляли на 1 час при комнатной температуре. По окончании указанного времени опытные отрезки на 30 мин. погружали в 0,2% раствор дезинфицирующего средства «Септабик» , отрезки тщательно промывали в дистиллированной воде, просушивали на фильтровальной бумаге. Контрольные отрезки обсеменяли спорами, но не обрабатывали средством «Септабик». На следующий день все отрезки закладывали в пакеты и стерилизовали в автоклаве (121 o С — 45 мин.), после чего каждый отрезок помещали в пробирку Эппендорфа, заливали питательной средой и культивировали при 55 o С.

В опыте (рис. 14) результаты испытаний были несколько лучше, чем в предыдущем, так как наблюдалась все же разница в доле проросших опытных и контрольных отрезков трубочек из силиконовой резины, однако эти различия не были впечатляющими. Во всяком случае даже после предстерилизационной очистки стерилизация макетов медицинских изделий оказалась неэффективной. И это несмотря на то, что обрабатывать небольшие отрезки трубочек гораздо легче, чем большие и сложные изделия, где возможные места обсеменения микроорганизмами менее доступны для дезинфицирующих растворов.

Рис. 14. Результаты стерилизации отрезков силиконовой трубки после их предстерилизационной очистки и без нее. В каждой паре столбиков слева — число отрезков трубки с жизнеспособными спорами при культивировании с обычной питательной средой, справа — с новой питательной средой. Числа над столбиками — число спор В. stearothermophilus, нанесенных изначально на внутреннюю поверхность отрезков трубки.

Ввиду необычности полученных результатов необходимо убедиться в том, что не были допущены технические погрешности. На протяжении всего времени исследований и помещениях и в ламинарном боксе расставлялись чашки с питательным агаром, но ни разу бактерии В. stearothermophilus иыделены не были, как и не были выделены из питательной среды и других использованных ингредиентов (в каждом опыте делали посевы питательной среды и дистиллированной воды на 10 агаровых чашек и 10 пробирок Эппендорфа с питательной средой, но безрезультатно). Предположение о том, что число бактерий в биологических индикаторах возрастает во время высушивания, не подтвердилось (известно, что В. stearothermophilus не размножается при 37 o С).

Таким образом полученные результаты являются неутешительными, но все же, по крайней мере, для некоторых авторов ожидаемыми. Из всей огромной массы литературы по термоинактивации споровых бактерий, в том числе фундаментальных исследований , ближе всех к нашей трактовке стоит монография Мунблитн, Тальрозе и Трофимова , которые экспериментов не ставили и пользовались лишь данными литературы. Эти авторы, придерживающиеся объяснения термоинактивации спор за счет термоповреждений жизненно важных белков и сублетальных повреждений мембраны, высказали опасения относительно эффективности стерилизации: «…стандартные условия теплового воздействия (120 o С, 30 мин.) в некоторых случаях не обеспечивают высокой надежности стерилизации», «…существует принципиальная опасность восстановления и размножения в организме человека микроорганизмов, которые были признаны погибшими». По нашим данным даже такие облигатные и непатогенные термофилы как В. stearothermophilus способны к ограниченному размножению при 37 o С, если к питательной среде добавить кровь человека.

Не только биологические индикаторы изредка содержали жизнеспособные споры после стерилизации, но и макеты обсемененных спорами медицинских изделий. Более того, предстерилизационная обработка макетов раствором кипящей соды или 0,2% раствора препарата «Септабик» не сопровождалась достаточным эффектом — стерилизация была неэффективной.

Теперь задача заключается в том, чтобы разработать новые методы, которые смогут гарантировать эффективность стерилизации. Наше представление о кинетике стерилизационного процесса позволили апробировать новые методические предложения, которые оказались перспективными, но требуют разносторонней проверки.

Выводы

1. Распределение редких и случайных событий позволяет рассчитывать среднее число спор на один биологический индикатор для условий, когда число жизнеспособных спор мало и встречаются они далеко не в каждом индикаторе.

2. Имеется достаточно оснований, чтобы усомниться в линейном характере зависимости между логарифмом числа спор в биологических индикаторах и временем от начала стерилизации. Жизнеспособные споры были обнаружены в биологических индикаторах даже через 1-2 часа пребывания в автоклаве при регламентированной температуре.

3. В экспериментах по контролю паровой стерилизации применяли значительное число биологических индикаторов, высокоэффективную цветную питательную среду и недельный срок культивирования в термостате, что в конечном итоге позволило обнаруживать жизнеспособные споры в биологических индикаторах после стерилизации чаще, чем обычно и практически при большинстве употребляющихся в практике режимах.

4. При высевах содержимого биологических индикаторов после стерилизации на плотную питательную среду в ряде случаев обнаруживались единичные колонии В. stearothermophilus, причем в большинстве случаев распределение агаровых чашек Петри по числу колоний в точности соответствовало распределению Пуассона, а это означало, что жизнеспособные споры не зависят друг от друга и расположены изолированно и случайно.

5. В некоторых экспериментах процент биологических индикаторов с жизнеспособными спорами после длительных сроков стерилизации превышал таковой после коротких сроков стерилизации, что не находило удовлетворительного объяснения. Мы предположили волнообразный характер зависимости логарифма числа жизнеспособных спор в биологических индикаторах от времени стерилизации.

6. Контроль стерилизаторов, установленных в практических лечебных учреждениях, показал, что во всех случаях та или иная часть биологических индикаторов содержала жизнеспособные споры после стерилизации, а вероятность неудовлетворительных результатов анализа индикаторов оказалась гораздо выше той, которая рекомендована в стандартах.

7. Экспериментальная паровая стерилизация отрезков трубочек из синтетических материалов, обсемененных спорами, после предстерилизационной очистки закончилась обнаружением жизнеспособных спор у более, чем половины экземпляров, т. е. результатами, аналогичными тем, которые были получены с биологическими индикаторами.

8. Число жизнеспособных спор в биологическом индикаторе после стерилизации является вероятностной величиной, а их обнаружение, кроме всего прочего, зависит от числа индикаторов в стерилизационной камере.

Литература

1. Абрамова И.М. Новые разработки в области стерилизации изделий медицинского назначения. Дезинфекционное дело, 1998, №3, с. 25.
2. Большев А.Н., Смирнов Н.В. Таблицы математической статистики. М., 1965.
3. Вашков В.И. Антимикробные средства и методы дезинфекции при инфекционных заболеваниях. М., 1977.
4. Гутерман Р.Л. Средства контроля термической стерилизации изделий медицинского назначения. Дисс. канд. мед. наук. М., 1993.
5. Кашнер Д. Жизнь микробов в экстремальных условиях. М., 1981.
6. Леви М.И., Бессонова В.Я., Лившиц М.М. Применение цветных питательных сред в процессе контроля стерилизации. Клиническая лабораторная диагностика, 1993, № 2, с. 65-67.
7. Леви М.И. Анализ неблагоприятных результатов паровой и воздушной стерилизации. Дезинфекционное дело, 1996, № 4, с. 58-63.
8. Леви М.И. Значение контроля стерилизации с помощью бумажных индикаторов и биотестов. Дезинфекционное дело, 1997, № 3, с. 24-28.
9. Леви М.И., Сучков Ю.Г., Рубан Г.И., Мищенко А.В. Новые формы бактериальных тестов для контроля разных режимов стерилизации. Там же, с. 29-33.
10. Леви М.И., Сучков Ю.Г., Лившиц М.М. Оптимизация биотестов для контроля паровой стерилизации. Дезинфекционное дело, 1998, № 2, с. 30-33.
11. Леви М.И. Численное определение величины D, стерилизационного времени и выбор контрольных биотестов. Там же, с. 34-42.
12. Методические указания по контролю паровых и воздушных стерилизаторов. Минздрав СССР, от 28.02.91 № 15/6-5.
13. Мунблит В.Я., Тальрозе В.Л., Трофимов В.И. Термоинактивация микроорганизмов. М., 1985.
14. Под ред. Озерецковского Н.А. и Останина Г.И. Бактерийные и вирусные лечебно-профилактические препараты. Аллергены. Дезинфекционно-стерилизационные режимы поликлиник. С.-Петербург, 1998.
15. Сучков Ю.Г., Леви М.И., Бессонова В.Я. Новый термофильный штамм для бактериологического контроля паровой стерилизации (сообщение 1), Дезинфекционное дело, 1996, № 3, с. 28-33.
16. Biological systems for testing sterilizers — Part 1: General requirements. European standard, Draft pr EN 866-1.1995.
17. Farrell J., Rose A.N. Temperature effect on microorganisms. In: «Thermobiology», p. 147-218. Acad. press, London-New-York, 1967.
18. Graham G.S. Biological indicators for hospital and industrial sterilization, p. 54-72. In: «Sterilization of medical product». Johnson and Johnson. Moscow, 1991.
19. Greene V.W. Principles and practice of disinfection, preservation and sterilization. Oxford, 1982.
20. International standard ISO/DIS 14161. Sterilization of health care products — guidence for the selection, use and interpretation of results. 1998.
21. McCormick P.J., Scoville J.R. — патент USA № 4.743.537, 1988 г.
22. Medical devices — Estimation of the population of microorganisms on product. Part 2 guidence, pr EN 1174-2.1994 г.
23. Russel A.D. The destruction of bacterial spores. Acad. press, London-New-York, 1982.
24. Russel A.D. Fundamental aspects of microbial resistance to chemical and physical agents. In: «Sterilization of medical product», v. V, p. 22-42. Johnson and Johnson, 1991.
25. Sussman A., Halvorson H. Spores, their dormancy and germinatiom. New-York-London, 1967.
26. Wicks J.H., Foltz W.E. Европейский патент № 0414.968 A1, 1991 г.
27. Журавлева В.И., Большедворская З.Ф. Оценка питательных сред для культивирования тест-микроорганизмов, используемых при контроле эффективности стерилизации в автоклавах. Лабораторное дело, 1988, № 11, с. 63-64.
28. Калинина Н.М., Шилова С.В., Мотина Г.Л., Чайковская С.М. Изучение термоустойчивости спор культуры Вас. stearothermophilus, используемой для приготовления биоиндикаторов. Антибиотики, 1982, № 2, с. 117-120.
29. Калинина Н.М., Мотина ГЛ., Чайковская С.М., Шилова С.В. Приготовление биоиндикаторов для контроля эффективности процессов стерилизации. Антибиотики, 1983, № 10, с. 600-603.